A Vision Transformer Approach for Traffic Congestion Prediction in Urban Areas

计算机科学 卷积神经网络 交通拥挤 浮动车数据 流量(计算机网络) 智能交通系统 基于Kerner三相理论的交通拥堵重构 先进的交通管理系统 实时计算 深度学习 人工智能 运输工程 工程类 计算机网络
作者
Kadiyala Ramana,Gautam Srivastava,M. Rudra Kumar,Thippa Reddy Gadekallu,Jerry Chun‐Wei Lin,Mamoun Alazab,Celestine Iwendi
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (4): 3922-3934 被引量:38
标识
DOI:10.1109/tits.2022.3233801
摘要

Traffic problems continue to deteriorate because of increasing population in urban areas that rely on many modes of transportation, the transportation infrastructure has achieved considerable strides in the last several decades. This has led to an increase in congestion control difficulties, which directly affect citizens through air pollution, fuel consumption, traffic law breaches, noise pollution, accidents, and loss of time. Traffic prediction is an essential aspect of an intelligent transportation system in smart cities because it helps reduce overall traffic congestion. This article aims to design and enforce a traffic prediction scheme that is efficient and accurate in forecasting traffic flow. Available traffic flow prediction methods are still unsuitable for real-world applications. This fact motivated us to work on a traffic flow forecasting issue using Vision Transformers (VTs). In this work, VTs were used in conjunction with Convolutional neural networks (CNN) to predict traffic congestion in urban spaces on a city-wide scale. In our proposed architecture, a traffic image is fed to a CNN, which generates feature maps. These feature maps are then fed to the VT, which employs the dual techniques of tokenization and projection. Tokenization is used to convert features into tokens containing Vision information, which are then sent to projection, where they are transformed into feature maps and ultimately delivered to LSTM. The experimental results demonstrate that the vision transformer prediction method based on Spatio-temporal characteristics is an excellent way of predicting traffic flow, particularly during anomalous traffic situations. The proposed technology surpasses traditional methods in terms of precision, accuracy and recall and aids in energy conservation. Through rerouting, the proposed work will benefit travellers and reduce fuel use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助寒月如雪采纳,获得10
刚刚
lovelife完成签到,获得积分10
刚刚
CodeCraft应助清秀凌蝶采纳,获得10
1秒前
大个应助asdfqwer采纳,获得10
3秒前
cck完成签到,获得积分10
5秒前
6秒前
8秒前
9秒前
寒月如雪发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
加油冲完成签到,获得积分10
18秒前
万能图书馆应助能量球采纳,获得10
18秒前
幽若宝宝应助夹心大王采纳,获得10
19秒前
皓月星辰发布了新的文献求助10
21秒前
21秒前
扬帆发布了新的文献求助10
22秒前
24秒前
丽颖完成签到,获得积分20
24秒前
24秒前
阳光湘完成签到,获得积分10
25秒前
25秒前
所所应助兔兔sci采纳,获得10
26秒前
爆米花应助花羽采纳,获得10
27秒前
丽颖发布了新的文献求助10
27秒前
清秀凌蝶发布了新的文献求助10
27秒前
StevenZhao完成签到,获得积分0
27秒前
能量球发布了新的文献求助10
28秒前
124332发布了新的文献求助10
28秒前
EtAior应助唠叨的以柳采纳,获得10
29秒前
小雅完成签到,获得积分10
29秒前
tc发布了新的文献求助10
29秒前
32秒前
1665发布了新的文献求助10
33秒前
云阳完成签到,获得积分10
33秒前
扬帆完成签到,获得积分10
33秒前
我爱科研发布了新的文献求助10
35秒前
37秒前
哈哈哈应助124332采纳,获得10
40秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264555
求助须知:如何正确求助?哪些是违规求助? 2904599
关于积分的说明 8330934
捐赠科研通 2574839
什么是DOI,文献DOI怎么找? 1399526
科研通“疑难数据库(出版商)”最低求助积分说明 654506
邀请新用户注册赠送积分活动 633205