已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Vision Transformer Approach for Traffic Congestion Prediction in Urban Areas

计算机科学 卷积神经网络 交通拥挤 浮动车数据 流量(计算机网络) 智能交通系统 基于Kerner三相理论的交通拥堵重构 先进的交通管理系统 实时计算 深度学习 人工智能 运输工程 工程类 计算机网络
作者
Kadiyala Ramana,Gautam Srivastava,M. Rudra Kumar,Thippa Reddy Gadekallu,Jerry Chun‐Wei Lin,Mamoun Alazab,Celestine Iwendi
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (4): 3922-3934 被引量:38
标识
DOI:10.1109/tits.2022.3233801
摘要

Traffic problems continue to deteriorate because of increasing population in urban areas that rely on many modes of transportation, the transportation infrastructure has achieved considerable strides in the last several decades. This has led to an increase in congestion control difficulties, which directly affect citizens through air pollution, fuel consumption, traffic law breaches, noise pollution, accidents, and loss of time. Traffic prediction is an essential aspect of an intelligent transportation system in smart cities because it helps reduce overall traffic congestion. This article aims to design and enforce a traffic prediction scheme that is efficient and accurate in forecasting traffic flow. Available traffic flow prediction methods are still unsuitable for real-world applications. This fact motivated us to work on a traffic flow forecasting issue using Vision Transformers (VTs). In this work, VTs were used in conjunction with Convolutional neural networks (CNN) to predict traffic congestion in urban spaces on a city-wide scale. In our proposed architecture, a traffic image is fed to a CNN, which generates feature maps. These feature maps are then fed to the VT, which employs the dual techniques of tokenization and projection. Tokenization is used to convert features into tokens containing Vision information, which are then sent to projection, where they are transformed into feature maps and ultimately delivered to LSTM. The experimental results demonstrate that the vision transformer prediction method based on Spatio-temporal characteristics is an excellent way of predicting traffic flow, particularly during anomalous traffic situations. The proposed technology surpasses traditional methods in terms of precision, accuracy and recall and aids in energy conservation. Through rerouting, the proposed work will benefit travellers and reduce fuel use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
chenjian完成签到,获得积分10
2秒前
迷路的台灯完成签到 ,获得积分10
5秒前
5秒前
852应助Lemon采纳,获得10
7秒前
zzyfsh发布了新的文献求助10
8秒前
pp发布了新的文献求助10
10秒前
有魅力的白玉完成签到 ,获得积分10
12秒前
13秒前
春天的粥完成签到 ,获得积分10
13秒前
TT发布了新的文献求助10
18秒前
vippp完成签到 ,获得积分10
18秒前
称心初之完成签到 ,获得积分10
19秒前
小蝶完成签到 ,获得积分10
19秒前
pp完成签到 ,获得积分10
21秒前
22秒前
寂寞的诗云完成签到,获得积分10
23秒前
在水一方应助xiaoya927217采纳,获得10
24秒前
小蛇玩完成签到,获得积分10
26秒前
暮封发布了新的文献求助10
28秒前
tjnksy完成签到,获得积分10
29秒前
情怀应助HUOZHUANGCHAO采纳,获得10
32秒前
科研通AI6应助哲别采纳,获得10
34秒前
祝佳其完成签到 ,获得积分10
35秒前
暮封完成签到,获得积分10
37秒前
TT完成签到,获得积分10
41秒前
41秒前
情怀应助长情无心采纳,获得10
45秒前
今后应助阿梅梅梅采纳,获得10
45秒前
慕青应助阿梅梅梅采纳,获得10
45秒前
小蘑菇应助喜悦的如娆采纳,获得10
46秒前
浮游应助科研通管家采纳,获得10
48秒前
浮游应助科研通管家采纳,获得10
48秒前
浮游应助科研通管家采纳,获得10
48秒前
科研通AI2S应助科研通管家采纳,获得30
48秒前
田様应助科研通管家采纳,获得10
48秒前
小马甲应助科研通管家采纳,获得10
48秒前
淡淡的妙梦完成签到,获得积分10
50秒前
max完成签到,获得积分10
50秒前
研究生完成签到 ,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458721
求助须知:如何正确求助?哪些是违规求助? 4564728
关于积分的说明 14296793
捐赠科研通 4489783
什么是DOI,文献DOI怎么找? 2459293
邀请新用户注册赠送积分活动 1449020
关于科研通互助平台的介绍 1424511