A Vision Transformer Approach for Traffic Congestion Prediction in Urban Areas

计算机科学 卷积神经网络 交通拥挤 浮动车数据 流量(计算机网络) 智能交通系统 基于Kerner三相理论的交通拥堵重构 先进的交通管理系统 实时计算 深度学习 人工智能 运输工程 工程类 计算机网络
作者
Kadiyala Ramana,Gautam Srivastava,M. Rudra Kumar,Thippa Reddy Gadekallu,Jerry Chun‐Wei Lin,Mamoun Alazab,Celestine Iwendi
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (4): 3922-3934 被引量:38
标识
DOI:10.1109/tits.2022.3233801
摘要

Traffic problems continue to deteriorate because of increasing population in urban areas that rely on many modes of transportation, the transportation infrastructure has achieved considerable strides in the last several decades. This has led to an increase in congestion control difficulties, which directly affect citizens through air pollution, fuel consumption, traffic law breaches, noise pollution, accidents, and loss of time. Traffic prediction is an essential aspect of an intelligent transportation system in smart cities because it helps reduce overall traffic congestion. This article aims to design and enforce a traffic prediction scheme that is efficient and accurate in forecasting traffic flow. Available traffic flow prediction methods are still unsuitable for real-world applications. This fact motivated us to work on a traffic flow forecasting issue using Vision Transformers (VTs). In this work, VTs were used in conjunction with Convolutional neural networks (CNN) to predict traffic congestion in urban spaces on a city-wide scale. In our proposed architecture, a traffic image is fed to a CNN, which generates feature maps. These feature maps are then fed to the VT, which employs the dual techniques of tokenization and projection. Tokenization is used to convert features into tokens containing Vision information, which are then sent to projection, where they are transformed into feature maps and ultimately delivered to LSTM. The experimental results demonstrate that the vision transformer prediction method based on Spatio-temporal characteristics is an excellent way of predicting traffic flow, particularly during anomalous traffic situations. The proposed technology surpasses traditional methods in terms of precision, accuracy and recall and aids in energy conservation. Through rerouting, the proposed work will benefit travellers and reduce fuel use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aaaa发布了新的文献求助10
1秒前
竹音完成签到,获得积分10
2秒前
子伯完成签到,获得积分10
2秒前
自信的昊焱完成签到,获得积分10
5秒前
今后应助四季夏目采纳,获得10
6秒前
阿槿发布了新的文献求助10
8秒前
善学以致用应助idynamics采纳,获得10
9秒前
9秒前
12秒前
14秒前
捷克发布了新的文献求助10
15秒前
七叶树完成签到,获得积分10
15秒前
小彤完成签到 ,获得积分10
17秒前
Orange应助小黑采纳,获得10
18秒前
清爽擎汉完成签到,获得积分20
18秒前
猪猪hero发布了新的文献求助10
18秒前
默listening发布了新的文献求助10
19秒前
22秒前
liberation完成签到 ,获得积分0
22秒前
领导范儿应助Roussinsalt采纳,获得10
23秒前
万能图书馆应助阿槿采纳,获得10
24秒前
25秒前
SYLH应助祥子的骆驼采纳,获得10
26秒前
26秒前
清爽擎汉关注了科研通微信公众号
29秒前
小黑发布了新的文献求助10
29秒前
研友_VZG7GZ应助小火苗采纳,获得10
30秒前
默listening完成签到,获得积分10
30秒前
30秒前
卡奇Mikey完成签到,获得积分10
31秒前
眠眠清完成签到 ,获得积分10
32秒前
32秒前
李健应助lotus采纳,获得30
32秒前
32秒前
感性的夜玉完成签到,获得积分10
33秒前
balmy完成签到 ,获得积分10
34秒前
阿槿完成签到,获得积分20
34秒前
35秒前
朴素友安完成签到 ,获得积分10
35秒前
Roussinsalt发布了新的文献求助10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966147
求助须知:如何正确求助?哪些是违规求助? 3511532
关于积分的说明 11158765
捐赠科研通 3246148
什么是DOI,文献DOI怎么找? 1793309
邀请新用户注册赠送积分活动 874295
科研通“疑难数据库(出版商)”最低求助积分说明 804343