清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Towards Lightweight Pixel-Wise Hallucination for Heterogeneous Face Recognition

计算机科学 像素 人工智能 面子(社会学概念) 概率逻辑 翻译(生物学) 计算机视觉 推论 发电机(电路理论) 模式识别(心理学) 面部识别系统 图像(数学) 物理 社会学 信使核糖核酸 基因 量子力学 功率(物理) 化学 生物化学 社会科学
作者
Chaoyou Fu,Xiaoqiang Zhou,Weizan He,Ran He
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:5
标识
DOI:10.1109/tpami.2022.3227180
摘要

Cross-spectral face hallucination is an intuitive way to mitigate the modality discrepancy in Heterogeneous Face Recognition (HFR). However, due to imaging differences, the hallucination inevitably suffers from a shape misalignment between paired heterogeneous images. Rather than building complicated architectures to circumvent the problem like previous works, we propose a simple yet effective method called Shape Alignment FacE (SAFE). Specifically, given an image, we align its shape to that of the paired one under the assistance of a 3D face model. The produced aligned pair enables us to train a lightweight generator that solely concentrates on spectrum translation with a pixel-wise supervision. However, since the 3D face model is powerless to attributes like the hair and glasses, there are still pixel discrepancies between the aligned pair. Given that, in the image space, we introduce a probabilistic pixel-wise loss that incorporates the discrepancies into a probabilistic distribution. Moreover, in order to alleviate the influence of the shape misalignment on spectrum translation, a spectrum optimal transport is performed in a shape-irrelevant latent space. Note that, in the final inference phase, except the lightweight generator, all other auxiliary modules are discarded. In addition to superior performance in qualitative synthesis and quantitative recognition, extensive experiments on 6 datasets demonstrate that our method also gains other two distinct advantages over existing state-of-the-art counterparts. The first is using a more lightweight generator. Compared with the state-of-the-art method, our method can achieve higher recognition results with 128x fewer parameters and 63x fewer FLOPs with only 4.58 ms latency on a single TITAN-XP. The second is training on low-shot datasets such as Oulu-CASIA NIR-VIS that just contains 1,920 images from 20 identities. To the best of our knowledge, we are the first that can perform well on such a small-scale dataset. These advantages make our method more practical in the real world and further push boundaries of heterogeneous face recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zl完成签到 ,获得积分10
5秒前
LPPQBB应助科研通管家采纳,获得200
16秒前
乐观无心完成签到,获得积分10
20秒前
范冰冰完成签到,获得积分10
43秒前
紫荆完成签到 ,获得积分10
54秒前
研友_ZGR70n完成签到 ,获得积分10
1分钟前
直率的笑翠完成签到 ,获得积分10
2分钟前
2分钟前
zznzn发布了新的文献求助10
2分钟前
2分钟前
充电宝应助zznzn采纳,获得10
2分钟前
1250241652完成签到,获得积分10
2分钟前
共享精神应助1250241652采纳,获得10
2分钟前
魁梧的衫完成签到 ,获得积分10
3分钟前
Ji完成签到,获得积分10
3分钟前
称心的火车完成签到 ,获得积分10
3分钟前
常有李完成签到,获得积分10
4分钟前
4分钟前
4分钟前
小李医生发布了新的文献求助10
4分钟前
4分钟前
锦慜完成签到 ,获得积分10
4分钟前
Criminology34应助kyyp采纳,获得10
4分钟前
4分钟前
wodetaiyangLLL完成签到 ,获得积分10
4分钟前
5分钟前
Criminology34举报adong求助涉嫌违规
5分钟前
5分钟前
5分钟前
juan完成签到 ,获得积分0
5分钟前
5分钟前
1250241652发布了新的文献求助10
5分钟前
5分钟前
两个榴莲完成签到,获得积分0
6分钟前
小奋青完成签到 ,获得积分10
7分钟前
7分钟前
MathFun发布了新的文献求助10
7分钟前
8分钟前
研友_ngqoE8完成签到,获得积分10
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5324554
求助须知:如何正确求助?哪些是违规求助? 4465370
关于积分的说明 13894437
捐赠科研通 4357382
什么是DOI,文献DOI怎么找? 2393359
邀请新用户注册赠送积分活动 1386852
关于科研通互助平台的介绍 1357355