Towards Lightweight Pixel-Wise Hallucination for Heterogeneous Face Recognition

计算机科学 像素 人工智能 面子(社会学概念) 概率逻辑 翻译(生物学) 计算机视觉 推论 发电机(电路理论) 模式识别(心理学) 面部识别系统 图像(数学) 物理 社会学 信使核糖核酸 基因 量子力学 功率(物理) 化学 生物化学 社会科学
作者
Chaoyou Fu,Xiaoqiang Zhou,Weizan He,Ran He
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:5
标识
DOI:10.1109/tpami.2022.3227180
摘要

Cross-spectral face hallucination is an intuitive way to mitigate the modality discrepancy in Heterogeneous Face Recognition (HFR). However, due to imaging differences, the hallucination inevitably suffers from a shape misalignment between paired heterogeneous images. Rather than building complicated architectures to circumvent the problem like previous works, we propose a simple yet effective method called Shape Alignment FacE (SAFE). Specifically, given an image, we align its shape to that of the paired one under the assistance of a 3D face model. The produced aligned pair enables us to train a lightweight generator that solely concentrates on spectrum translation with a pixel-wise supervision. However, since the 3D face model is powerless to attributes like the hair and glasses, there are still pixel discrepancies between the aligned pair. Given that, in the image space, we introduce a probabilistic pixel-wise loss that incorporates the discrepancies into a probabilistic distribution. Moreover, in order to alleviate the influence of the shape misalignment on spectrum translation, a spectrum optimal transport is performed in a shape-irrelevant latent space. Note that, in the final inference phase, except the lightweight generator, all other auxiliary modules are discarded. In addition to superior performance in qualitative synthesis and quantitative recognition, extensive experiments on 6 datasets demonstrate that our method also gains other two distinct advantages over existing state-of-the-art counterparts. The first is using a more lightweight generator. Compared with the state-of-the-art method, our method can achieve higher recognition results with 128x fewer parameters and 63x fewer FLOPs with only 4.58 ms latency on a single TITAN-XP. The second is training on low-shot datasets such as Oulu-CASIA NIR-VIS that just contains 1,920 images from 20 identities. To the best of our knowledge, we are the first that can perform well on such a small-scale dataset. These advantages make our method more practical in the real world and further push boundaries of heterogeneous face recognition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
雪白摇伽完成签到,获得积分10
2秒前
烂漫破茧发布了新的文献求助10
2秒前
miao发布了新的文献求助10
3秒前
3秒前
杨昕发布了新的文献求助10
4秒前
4秒前
Hello应助260929667采纳,获得10
4秒前
林小乌龟完成签到,获得积分10
4秒前
可爱的函函应助ticsadis采纳,获得10
5秒前
和谐的追命完成签到,获得积分10
5秒前
5秒前
5秒前
秘密发布了新的文献求助10
5秒前
小乐儿~完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
gkkkk发布了新的文献求助10
8秒前
活是医大的鬼完成签到,获得积分10
8秒前
8秒前
8秒前
科研通AI6应助zz采纳,获得10
9秒前
科研通AI6应助哥斯拉采纳,获得10
9秒前
斑驳发布了新的文献求助10
9秒前
9秒前
科研通AI6应助CC采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
公主殿下发布了新的文献求助10
11秒前
科研通AI6应助黑娃采纳,获得10
11秒前
ALRISH发布了新的文献求助10
12秒前
双shuang发布了新的文献求助10
12秒前
脑洞疼应助乌拉呀哈呀哈采纳,获得10
13秒前
zongjj发布了新的文献求助10
13秒前
13秒前
Kaito发布了新的文献求助10
14秒前
14秒前
深情安青应助LooQueSiento采纳,获得10
14秒前
桐桐应助Chen采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525198
求助须知:如何正确求助?哪些是违规求助? 4615517
关于积分的说明 14548794
捐赠科研通 4553583
什么是DOI,文献DOI怎么找? 2495376
邀请新用户注册赠送积分活动 1475913
关于科研通互助平台的介绍 1447670