Towards Lightweight Pixel-Wise Hallucination for Heterogeneous Face Recognition

计算机科学 像素 人工智能 面子(社会学概念) 概率逻辑 翻译(生物学) 计算机视觉 推论 发电机(电路理论) 模式识别(心理学) 面部识别系统 图像(数学) 社会科学 功率(物理) 基因 生物化学 化学 物理 量子力学 社会学 信使核糖核酸
作者
Chaoyou Fu,Xiaoqiang Zhou,Weizan He,Ran He
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:5
标识
DOI:10.1109/tpami.2022.3227180
摘要

Cross-spectral face hallucination is an intuitive way to mitigate the modality discrepancy in Heterogeneous Face Recognition (HFR). However, due to imaging differences, the hallucination inevitably suffers from a shape misalignment between paired heterogeneous images. Rather than building complicated architectures to circumvent the problem like previous works, we propose a simple yet effective method called Shape Alignment FacE (SAFE). Specifically, given an image, we align its shape to that of the paired one under the assistance of a 3D face model. The produced aligned pair enables us to train a lightweight generator that solely concentrates on spectrum translation with a pixel-wise supervision. However, since the 3D face model is powerless to attributes like the hair and glasses, there are still pixel discrepancies between the aligned pair. Given that, in the image space, we introduce a probabilistic pixel-wise loss that incorporates the discrepancies into a probabilistic distribution. Moreover, in order to alleviate the influence of the shape misalignment on spectrum translation, a spectrum optimal transport is performed in a shape-irrelevant latent space. Note that, in the final inference phase, except the lightweight generator, all other auxiliary modules are discarded. In addition to superior performance in qualitative synthesis and quantitative recognition, extensive experiments on 6 datasets demonstrate that our method also gains other two distinct advantages over existing state-of-the-art counterparts. The first is using a more lightweight generator. Compared with the state-of-the-art method, our method can achieve higher recognition results with 128x fewer parameters and 63x fewer FLOPs with only 4.58 ms latency on a single TITAN-XP. The second is training on low-shot datasets such as Oulu-CASIA NIR-VIS that just contains 1,920 images from 20 identities. To the best of our knowledge, we are the first that can perform well on such a small-scale dataset. These advantages make our method more practical in the real world and further push boundaries of heterogeneous face recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白完成签到,获得积分10
2秒前
lennon完成签到,获得积分10
2秒前
鲁轶祎完成签到,获得积分10
2秒前
闪闪星星完成签到,获得积分10
3秒前
maox1aoxin应助卢11采纳,获得30
4秒前
Yippee完成签到 ,获得积分10
5秒前
walongjushi完成签到 ,获得积分10
6秒前
Karvs完成签到,获得积分10
7秒前
Carpediem完成签到 ,获得积分10
8秒前
西瓜完成签到 ,获得积分10
10秒前
yy完成签到,获得积分10
11秒前
漂亮的西西完成签到,获得积分10
11秒前
岚风完成签到,获得积分10
13秒前
111完成签到,获得积分10
13秒前
kuai0Yu完成签到,获得积分10
13秒前
YY完成签到,获得积分10
14秒前
_xySH完成签到 ,获得积分10
14秒前
zhang完成签到 ,获得积分10
15秒前
良辰应助ppboyindream采纳,获得10
16秒前
繁荣的柏柳完成签到,获得积分10
18秒前
孙一完成签到,获得积分10
18秒前
XNM完成签到,获得积分10
18秒前
waiho完成签到,获得积分10
19秒前
上官若男应助chen采纳,获得10
19秒前
娇气的春天完成签到 ,获得积分10
19秒前
devil_lei完成签到,获得积分10
20秒前
21秒前
司徒涟妖完成签到,获得积分10
21秒前
鹿鹿呀完成签到 ,获得积分10
22秒前
火之高兴完成签到 ,获得积分10
22秒前
拼搏的小蚂蚁完成签到 ,获得积分10
25秒前
qu蛐发布了新的文献求助20
26秒前
minuxSCI完成签到,获得积分10
28秒前
三三得九完成签到 ,获得积分10
29秒前
韩麒嘉完成签到,获得积分10
29秒前
藜藜藜在乎你完成签到 ,获得积分10
30秒前
冷傲迎梦完成签到,获得积分10
31秒前
就这完成签到,获得积分10
31秒前
上官完成签到 ,获得积分10
32秒前
快乐保温杯完成签到 ,获得积分10
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294718
求助须知:如何正确求助?哪些是违规求助? 2930596
关于积分的说明 8446558
捐赠科研通 2602922
什么是DOI,文献DOI怎么找? 1420777
科研通“疑难数据库(出版商)”最低求助积分说明 660682
邀请新用户注册赠送积分活动 643475