Deep Reinforcement Learning Assisted Spectrum Management in Cellular Based Urban Air Mobility

强化学习 频谱管理 计算机科学 蜂窝网络 无线 干扰(通信) 电信 频率分配 广谱 稀缺 计算机网络 人工智能 认知无线电 频道(广播) 化学 组合化学 经济 微观经济学
作者
Ruixuan Han,Hongxiang Li,Rafael D. Apaza,Eric J. Knoblock,Michael R. Gasper
出处
期刊:IEEE Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:29 (6): 14-21 被引量:5
标识
DOI:10.1109/mwc.001.2200150
摘要

The emerging urban air mobility (UAM) opens a new transportation paradigm to support increasing mobility demand in metropolitan areas. A major challenge for UAM is to ensure reliable two-way wireless communications between aerial vehicles and their associated ground air traffic control centers for safe operations. The concept of cellular-based UAM (cUAM) provides a promising solution for reliable air-ground communications in urban air transportation, where each aerial vehicle is integrated into an existing cellular network as a new aerial user, sharing the cellular spectrum with existing terrestrial users. Generally, the additional aeronautical use of cellular spectrum can introduce harmful interference to current terrestrial communications, which only amplifies the severity of spectrum scarcity issues. Therefore, a new spectrum management solution is necessary for cUAM applications. In this article, we first introduce the communication requirements and spectrum management challenges in cUAM. Then we propose to apply deep reinforcement learning technology to perform dynamic spectrum management in cUAM. Next, a cUAM use case is investigated where a deep-reinforcement-learning-based dynamic spectrum sharing solution is proposed to minimize the total UAM mission completion time. Numerical results show that the proposed solution can reduce the mission completion time and improve the spectrum utilization efficiency. Finally, we present several directions for future research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
童绾绾发布了新的文献求助10
3秒前
are完成签到,获得积分10
3秒前
3秒前
3秒前
5秒前
5秒前
Carrie完成签到,获得积分10
6秒前
敏感安柏发布了新的文献求助10
6秒前
6秒前
lijiaxin应助1177采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
慕青应助科研通管家采纳,获得10
7秒前
7秒前
武雨寒发布了新的文献求助10
8秒前
乐乐应助美好斓采纳,获得10
8秒前
9秒前
9秒前
lu完成签到,获得积分10
10秒前
IFCOCO完成签到,获得积分10
10秒前
四火发布了新的文献求助10
10秒前
wang完成签到,获得积分10
10秒前
李瑞康发布了新的文献求助10
11秒前
11秒前
babayaga发布了新的文献求助10
12秒前
呆萌冰绿完成签到,获得积分10
13秒前
零一发布了新的文献求助10
14秒前
小葡萄icon完成签到 ,获得积分10
14秒前
韩涵发布了新的文献求助10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975871
求助须知:如何正确求助?哪些是违规求助? 3520207
关于积分的说明 11201502
捐赠科研通 3256611
什么是DOI,文献DOI怎么找? 1798403
邀请新用户注册赠送积分活动 877552
科研通“疑难数据库(出版商)”最低求助积分说明 806430