Deep Reinforcement Learning Assisted Spectrum Management in Cellular Based Urban Air Mobility

强化学习 频谱管理 计算机科学 蜂窝网络 无线 干扰(通信) 电信 频率分配 广谱 稀缺 计算机网络 人工智能 认知无线电 频道(广播) 经济 微观经济学 化学 组合化学
作者
Ruixuan Han,Hongxiang Li,Rafael D. Apaza,Eric J. Knoblock,Michael R. Gasper
出处
期刊:IEEE Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:29 (6): 14-21 被引量:5
标识
DOI:10.1109/mwc.001.2200150
摘要

The emerging urban air mobility (UAM) opens a new transportation paradigm to support increasing mobility demand in metropolitan areas. A major challenge for UAM is to ensure reliable two-way wireless communications between aerial vehicles and their associated ground air traffic control centers for safe operations. The concept of cellular-based UAM (cUAM) provides a promising solution for reliable air-ground communications in urban air transportation, where each aerial vehicle is integrated into an existing cellular network as a new aerial user, sharing the cellular spectrum with existing terrestrial users. Generally, the additional aeronautical use of cellular spectrum can introduce harmful interference to current terrestrial communications, which only amplifies the severity of spectrum scarcity issues. Therefore, a new spectrum management solution is necessary for cUAM applications. In this article, we first introduce the communication requirements and spectrum management challenges in cUAM. Then we propose to apply deep reinforcement learning technology to perform dynamic spectrum management in cUAM. Next, a cUAM use case is investigated where a deep-reinforcement-learning-based dynamic spectrum sharing solution is proposed to minimize the total UAM mission completion time. Numerical results show that the proposed solution can reduce the mission completion time and improve the spectrum utilization efficiency. Finally, we present several directions for future research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助张传强采纳,获得10
1秒前
2秒前
牛马发布了新的文献求助20
2秒前
Allen完成签到,获得积分10
3秒前
桐桐应助李lll采纳,获得10
5秒前
zcxxxxxxx发布了新的文献求助10
6秒前
yyz完成签到,获得积分10
6秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
咖啡不加糖完成签到 ,获得积分10
9秒前
10秒前
11秒前
12秒前
帅哥许发布了新的文献求助10
12秒前
球球尧伞耳完成签到,获得积分10
13秒前
14秒前
汉堡包应助牛马采纳,获得50
14秒前
风中冰香应助小刘采纳,获得10
14秒前
科目三应助orangel采纳,获得30
16秒前
瘦瘦的洪纲完成签到,获得积分10
16秒前
淡定夜山发布了新的文献求助10
16秒前
16秒前
18秒前
18秒前
帅哥许完成签到,获得积分20
19秒前
哭泣高跟鞋完成签到 ,获得积分10
20秒前
有点儿小库完成签到,获得积分10
20秒前
jinyuqian完成签到,获得积分10
21秒前
共勉YOUNG完成签到,获得积分10
23秒前
randomnyle发布了新的文献求助10
23秒前
23秒前
传奇3应助鱼鱼也有采纳,获得10
24秒前
24秒前
子龙完成签到,获得积分20
24秒前
小蘑菇应助二中所长采纳,获得10
26秒前
Owen应助二中所长采纳,获得10
26秒前
Jasper应助二中所长采纳,获得10
26秒前
高大的易蓉完成签到,获得积分10
26秒前
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5405424
求助须知:如何正确求助?哪些是违规求助? 4523745
关于积分的说明 14095053
捐赠科研通 4437438
什么是DOI,文献DOI怎么找? 2435688
邀请新用户注册赠送积分活动 1427810
关于科研通互助平台的介绍 1406086