Correlation between lipoprotein(a), albuminuria, myostatin and sarcopenia in elderly patients with type 2 diabetes

医学 蛋白尿 内科学 肌生成抑制素 肌萎缩 糖尿病 单变量分析 2型糖尿病 内分泌学 脂蛋白(a) 体质指数 视网膜病变 逻辑回归 脂蛋白 多元分析 胆固醇 骨骼肌
作者
Xiaoqian Li,Xinxing Kong,Ran Li
出处
期刊:Journal of Diabetes and Its Complications [Elsevier]
卷期号:37 (1): 108382-108382 被引量:7
标识
DOI:10.1016/j.jdiacomp.2022.108382
摘要

To investigate the relationship of the lipoprotein(a), albuminuria, myostatin with sarcopenia in elderly patients with type 2 diabetes (T2D). A total of 461 elderly patients with T2D who were admitted to our hospital were selected as the research subjects. There were 34 cases in line with Asian sarcopenia diagnosis (group A), and 427 patients had no such symptoms as the control group (group C). The levels of lipoprotein(a), albuminuria, myostatin in each group were compared, and the effect factors of muscle loss in elderly patients with T2D were analyzed by univariate/multivariate logistic regression. The incidence of sarcopenia in 461 elderly patients with T2D in this study was 7.37 % (34/461). However, the levels of appendicular skeletal muscle mass index (ASMI, kg/m2), albumin and epidermal growth factor receptor (eGFR) in group A were lower than those in group C (P < 0.05). The levels of lipoprotein(a), albuminuria, myostatin in group A were higher those in group C (P < 0.05). Additionally, group A had a higher morbidity in diabetic retinopathy and neuropathy. Univariate logistic regression analysis revealed that the risk factors of muscle loss are ASMI, lipoprotein(a), albuminuria, myostatin, diabetic retinopathy and neuropathy. Multivariate Logistic regression analysis showed that the risk factors of muscle loss in elderly patients with T2D were lipoprotein(a), albuminuria, myostatin and diabetic neuropathy. The lipoprotein(a), albuminuria, myostatin and diabetic neuropathy are closely related to the occurrence and development of muscle loss in elderly patients with T2D.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爆米花应助找不到采纳,获得10
刚刚
任性的梦菲应助圈圈采纳,获得30
刚刚
1秒前
Ava应助踏实的烙采纳,获得10
1秒前
2秒前
ChangSZ应助speedness采纳,获得10
2秒前
自由基不能聚合完成签到,获得积分10
2秒前
shone发布了新的文献求助10
3秒前
烟花应助yug采纳,获得10
3秒前
科研cc发布了新的文献求助10
3秒前
你仔细听发布了新的文献求助10
3秒前
路之遥兮发布了新的文献求助10
4秒前
一平发布了新的文献求助10
4秒前
jerry完成签到,获得积分20
4秒前
搞怪便当完成签到,获得积分10
4秒前
4秒前
4秒前
布丁仔完成签到,获得积分10
5秒前
5秒前
5秒前
Hu111完成签到,获得积分10
5秒前
5秒前
关琦完成签到,获得积分10
5秒前
6秒前
ZTT完成签到,获得积分20
6秒前
苗条的一一完成签到,获得积分10
6秒前
lxh2424发布了新的文献求助10
6秒前
6秒前
6秒前
dsjlove发布了新的文献求助10
7秒前
忧郁的续发布了新的文献求助10
7秒前
7秒前
科研r完成签到,获得积分10
7秒前
牧楊人完成签到 ,获得积分10
7秒前
Lucas应助勾勾1991采纳,获得10
8秒前
研友_VZG7GZ应助勾勾1991采纳,获得20
8秒前
充电宝应助勾勾1991采纳,获得20
8秒前
8秒前
Lucas应助勾勾1991采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672