Deep learning enhanced lithium-ion battery nonlinear fading prognosis

衰退 非线性系统 降级(电信) 电压 深度学习 人工智能 锂离子电池 电池(电) 机器学习 控制理论(社会学) 算法 计算机科学 工程类 电信 电气工程 物理 功率(物理) 控制(管理) 量子力学 解码方法
作者
Shanling Ji,Jianxiong Zhu,Zhiyang Lyu,Heze You,Yifan Zhou,Liudong Gu,Jinqing Qu,Zhijie Xia,Zhisheng Zhang,Haifeng Dai
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:78: 565-573 被引量:20
标识
DOI:10.1016/j.jechem.2022.12.028
摘要

With the assistance of artificial intelligence, advanced health prognosis technique plays a critical role in the lithium-ion (Li-ion) batteries management system. However, conventional data-driven early aging prediction exhibited dramatic drawbacks, i.e., volatile capacity nonlinear fading trajectories create obstacles to the accurate multistep ahead prediction due to the complex working conditions of batteries. Herein, a novel deep learning model is proposed to achieve a universal and accurate Li-ion battery aging prognosis. Two battery datasets with various electrode types and cycling conditions are developed to validate the proposed approaches. Knee-point probability (KPP), extracted from the capacity loss curve, is first proposed to detect knee points and improve state-of-health (SOH) predictive accuracy, especially during periods of rapid capacity decline. Using one-cycle data of partial raw voltage as the model input, the SOH and KPP can be simultaneously predicted at multistep ahead, whereas the conventional method showed worse accuracy. Furthermore, to explore the underlying characteristics among various degradation tendencies, an online model update strategy is developed by leveraging the adversarial adaptation-induced transfer learning technique. This work gains new sights into the comprehensive Li-ion battery management and prognosis framework through decomposing capacity degradation trajectories and adversarial learning on the unlabeled samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘎嘎嘎嘎发布了新的文献求助10
刚刚
法外潮湿宝贝完成签到 ,获得积分10
1秒前
1秒前
崔俊涛发布了新的文献求助10
1秒前
热情的人杰完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
Chaga完成签到,获得积分10
2秒前
小王爱读文献完成签到,获得积分10
3秒前
tang应助斯尼奇采纳,获得100
3秒前
vanessali完成签到 ,获得积分10
3秒前
whatever发布了新的文献求助50
4秒前
5秒前
5秒前
maox1aoxin应助醉某某采纳,获得30
5秒前
6秒前
xqwwqx发布了新的文献求助10
6秒前
7秒前
Ganlou应助百谷王采纳,获得10
7秒前
zzz完成签到,获得积分10
7秒前
7秒前
8秒前
YOP发布了新的文献求助10
9秒前
开心的半仙完成签到 ,获得积分10
9秒前
10秒前
智勇双全发布了新的文献求助10
10秒前
赘婿应助爱听歌小土豆采纳,获得30
10秒前
香蕉觅云应助骆十八采纳,获得30
10秒前
Liam发布了新的文献求助30
11秒前
von驳回了36456657应助
11秒前
就月听雨完成签到,获得积分10
11秒前
阿猹完成签到,获得积分10
11秒前
11秒前
沉静书翠完成签到 ,获得积分10
12秒前
12秒前
13秒前
Z182387完成签到,获得积分10
14秒前
执生完成签到,获得积分10
14秒前
星辰大海应助1580071102采纳,获得10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309308
求助须知:如何正确求助?哪些是违规求助? 2942666
关于积分的说明 8510202
捐赠科研通 2617790
什么是DOI,文献DOI怎么找? 1430403
科研通“疑难数据库(出版商)”最低求助积分说明 664123
邀请新用户注册赠送积分活动 649286