Hybrid transformer UNet for thyroid segmentation from ultrasound scans

计算机科学 分割 人工智能 模式识别(心理学) 特征提取 变压器 图像分割 计算机视觉 量子力学 物理 电压
作者
Jianning Chi,Zelan Li,Zhiyi Sun,Xiaosheng Yu,Huan Wang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:153: 106453-106453 被引量:19
标识
DOI:10.1016/j.compbiomed.2022.106453
摘要

Deep learning based medical image segmentation methods have been widely used for thyroid gland segmentation from ultrasound images, which is of great importance for the diagnosis of thyroid disease since it can provide various valuable sonography features. However, existing thyroid gland segmentation models suffer from: (1) low-level features that are significant in depicting thyroid boundaries are gradually lost during the feature encoding process, (2) contextual features reflecting the changes of difference between thyroid and other anatomies in the ultrasound diagnosis process are either omitted by 2D convolutions or weakly represented by 3D convolutions due to high redundancy. In this work, we propose a novel hybrid transformer UNet (H-TUNet) to segment thyroid glands in ultrasound sequences, which consists of two parts: (1) a 2D Transformer UNet is proposed by utilizing a designed multi-scale cross-attention transformer (MSCAT) module on every skipped connection of the UNet, so that the low-level features from different encoding layers are integrated and refined according to the high-level features in the decoding scheme, leading to better representation of differences between anatomies in one ultrasound frame; (2) a 3D Transformer UNet is proposed by applying a 3D self-attention transformer (SAT) module to the very bottom layer of 3D UNet, so that the contextual features representing visual differences between regions and consistencies within regions could be strengthened from successive frames in the video. The learning process of the H-TUNet is formulated as a unified end-to-end network, so the intra-frame feature extraction and inter-frame feature aggregation can be learned and optimized jointly. The proposed method was evaluated on Thyroid Segmentation in Ultrasonography Dataset (TSUD) and TG3k Dataset. Experimental results have demonstrated that our method outperformed other state-of-the-art methods with respect to the certain benchmarks for thyroid gland segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
郝飞飞完成签到,获得积分10
1秒前
qqz完成签到,获得积分10
2秒前
花花应助淡淡蛋挞采纳,获得10
3秒前
华仔应助虚幻靖易采纳,获得10
3秒前
4秒前
yingying发布了新的文献求助10
5秒前
可爱的函函应助香蕉静芙采纳,获得10
6秒前
张浩发布了新的文献求助10
6秒前
7秒前
fei发布了新的文献求助150
7秒前
8秒前
8秒前
9秒前
依灵完成签到,获得积分10
9秒前
9秒前
充电宝应助mariawang采纳,获得10
10秒前
王哈哈关注了科研通微信公众号
11秒前
kkdkg发布了新的文献求助10
11秒前
时笙发布了新的文献求助10
11秒前
苏利文完成签到,获得积分10
12秒前
12秒前
小二郎应助尔尔采纳,获得30
12秒前
13秒前
小丑鱼儿发布了新的文献求助10
13秒前
14秒前
Rubby应助Sissi采纳,获得10
14秒前
15秒前
隐形夕阳发布了新的文献求助50
16秒前
搞学术的发布了新的文献求助10
16秒前
Freddie发布了新的文献求助10
18秒前
淡淡梦容发布了新的文献求助10
18秒前
18秒前
mmol发布了新的文献求助10
19秒前
可靠的冰烟完成签到,获得积分10
19秒前
Ava应助kkdkg采纳,获得10
20秒前
Bio应助AA简单男孩采纳,获得26
21秒前
搜集达人应助虚幻靖易采纳,获得10
21秒前
Notdodead应助yyds采纳,获得10
21秒前
科研通AI2S应助Lu采纳,获得10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988732
求助须知:如何正确求助?哪些是违规求助? 3531027
关于积分的说明 11252281
捐赠科研通 3269732
什么是DOI,文献DOI怎么找? 1804764
邀请新用户注册赠送积分活动 881869
科研通“疑难数据库(出版商)”最低求助积分说明 809021