Hybrid transformer UNet for thyroid segmentation from ultrasound scans

计算机科学 分割 人工智能 模式识别(心理学) 特征提取 变压器 图像分割 计算机视觉 量子力学 物理 电压
作者
Jianning Chi,Zelan Li,Zhiyi Sun,Xiaosheng Yu,Huan Wang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:153: 106453-106453 被引量:19
标识
DOI:10.1016/j.compbiomed.2022.106453
摘要

Deep learning based medical image segmentation methods have been widely used for thyroid gland segmentation from ultrasound images, which is of great importance for the diagnosis of thyroid disease since it can provide various valuable sonography features. However, existing thyroid gland segmentation models suffer from: (1) low-level features that are significant in depicting thyroid boundaries are gradually lost during the feature encoding process, (2) contextual features reflecting the changes of difference between thyroid and other anatomies in the ultrasound diagnosis process are either omitted by 2D convolutions or weakly represented by 3D convolutions due to high redundancy. In this work, we propose a novel hybrid transformer UNet (H-TUNet) to segment thyroid glands in ultrasound sequences, which consists of two parts: (1) a 2D Transformer UNet is proposed by utilizing a designed multi-scale cross-attention transformer (MSCAT) module on every skipped connection of the UNet, so that the low-level features from different encoding layers are integrated and refined according to the high-level features in the decoding scheme, leading to better representation of differences between anatomies in one ultrasound frame; (2) a 3D Transformer UNet is proposed by applying a 3D self-attention transformer (SAT) module to the very bottom layer of 3D UNet, so that the contextual features representing visual differences between regions and consistencies within regions could be strengthened from successive frames in the video. The learning process of the H-TUNet is formulated as a unified end-to-end network, so the intra-frame feature extraction and inter-frame feature aggregation can be learned and optimized jointly. The proposed method was evaluated on Thyroid Segmentation in Ultrasonography Dataset (TSUD) and TG3k Dataset. Experimental results have demonstrated that our method outperformed other state-of-the-art methods with respect to the certain benchmarks for thyroid gland segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
可可完成签到,获得积分10
刚刚
1秒前
自由寻菱发布了新的文献求助20
2秒前
俏皮元珊发布了新的文献求助10
2秒前
Owen应助YY采纳,获得10
2秒前
优秀的逊发布了新的文献求助10
2秒前
wzm完成签到,获得积分10
3秒前
一年发3篇JACS完成签到,获得积分10
3秒前
3秒前
SciGPT应助木子采纳,获得10
4秒前
66完成签到,获得积分10
4秒前
赵鹏翔发布了新的文献求助10
4秒前
带象完成签到,获得积分10
4秒前
才露尖尖角完成签到,获得积分10
5秒前
幽默服饰完成签到 ,获得积分10
5秒前
芝士就是力量完成签到,获得积分10
5秒前
xr完成签到 ,获得积分10
5秒前
YaoX发布了新的文献求助10
6秒前
打打应助核桃采纳,获得10
6秒前
Porifera完成签到,获得积分10
6秒前
6秒前
笋蒸鱼发布了新的文献求助10
6秒前
余云开发布了新的文献求助50
7秒前
顾矜应助板凳采纳,获得10
7秒前
带象发布了新的文献求助20
8秒前
9秒前
9秒前
阿曼尼完成签到 ,获得积分10
9秒前
英俊的铭应助LILING采纳,获得10
9秒前
iRan完成签到,获得积分10
10秒前
落忆完成签到 ,获得积分10
10秒前
蜡笔完成签到,获得积分10
10秒前
趁微风不躁完成签到,获得积分10
10秒前
通~发布了新的文献求助10
11秒前
11秒前
张磊完成签到,获得积分10
11秒前
冷艳的太君完成签到,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740