Hybrid transformer UNet for thyroid segmentation from ultrasound scans

计算机科学 分割 人工智能 模式识别(心理学) 特征提取 变压器 图像分割 计算机视觉 量子力学 物理 电压
作者
Jianning Chi,Zelan Li,Zhiyi Sun,Xiaosheng Yu,Huan Wang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:153: 106453-106453 被引量:19
标识
DOI:10.1016/j.compbiomed.2022.106453
摘要

Deep learning based medical image segmentation methods have been widely used for thyroid gland segmentation from ultrasound images, which is of great importance for the diagnosis of thyroid disease since it can provide various valuable sonography features. However, existing thyroid gland segmentation models suffer from: (1) low-level features that are significant in depicting thyroid boundaries are gradually lost during the feature encoding process, (2) contextual features reflecting the changes of difference between thyroid and other anatomies in the ultrasound diagnosis process are either omitted by 2D convolutions or weakly represented by 3D convolutions due to high redundancy. In this work, we propose a novel hybrid transformer UNet (H-TUNet) to segment thyroid glands in ultrasound sequences, which consists of two parts: (1) a 2D Transformer UNet is proposed by utilizing a designed multi-scale cross-attention transformer (MSCAT) module on every skipped connection of the UNet, so that the low-level features from different encoding layers are integrated and refined according to the high-level features in the decoding scheme, leading to better representation of differences between anatomies in one ultrasound frame; (2) a 3D Transformer UNet is proposed by applying a 3D self-attention transformer (SAT) module to the very bottom layer of 3D UNet, so that the contextual features representing visual differences between regions and consistencies within regions could be strengthened from successive frames in the video. The learning process of the H-TUNet is formulated as a unified end-to-end network, so the intra-frame feature extraction and inter-frame feature aggregation can be learned and optimized jointly. The proposed method was evaluated on Thyroid Segmentation in Ultrasonography Dataset (TSUD) and TG3k Dataset. Experimental results have demonstrated that our method outperformed other state-of-the-art methods with respect to the certain benchmarks for thyroid gland segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yanaiqi关注了科研通微信公众号
1秒前
bkagyin应助王汉韬采纳,获得10
1秒前
2秒前
2秒前
crazy发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
nightmare发布了新的文献求助10
4秒前
Lili发布了新的文献求助10
5秒前
kingwill应助南韵采纳,获得20
6秒前
8秒前
Poik完成签到,获得积分10
8秒前
刘娅铷发布了新的文献求助10
8秒前
10秒前
小小吴完成签到,获得积分10
11秒前
不孤独的发卡完成签到,获得积分20
11秒前
潘善若发布了新的文献求助30
14秒前
zzzjh完成签到,获得积分10
14秒前
香蕉觅云应助超级采纳,获得10
16秒前
16秒前
安然完成签到 ,获得积分10
21秒前
桔子完成签到,获得积分10
21秒前
21秒前
落后的哈密瓜完成签到,获得积分10
22秒前
潘善若发布了新的文献求助10
23秒前
Rainbow完成签到 ,获得积分10
24秒前
26秒前
SciGPT应助momo采纳,获得10
26秒前
26秒前
Lili完成签到,获得积分10
27秒前
27秒前
28秒前
congyjs完成签到,获得积分20
30秒前
超级发布了新的文献求助10
31秒前
31秒前
潘善若发布了新的文献求助10
32秒前
Rondab应助胡图图采纳,获得10
32秒前
32秒前
34秒前
nilu完成签到,获得积分10
34秒前
congyjs发布了新的文献求助10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989297
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253893
捐赠科研通 3270097
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809158