亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hybrid transformer UNet for thyroid segmentation from ultrasound scans

计算机科学 分割 人工智能 模式识别(心理学) 特征提取 变压器 图像分割 计算机视觉 量子力学 物理 电压
作者
Jianning Chi,Zelan Li,Zhiyi Sun,Xiaosheng Yu,Huan Wang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:153: 106453-106453 被引量:19
标识
DOI:10.1016/j.compbiomed.2022.106453
摘要

Deep learning based medical image segmentation methods have been widely used for thyroid gland segmentation from ultrasound images, which is of great importance for the diagnosis of thyroid disease since it can provide various valuable sonography features. However, existing thyroid gland segmentation models suffer from: (1) low-level features that are significant in depicting thyroid boundaries are gradually lost during the feature encoding process, (2) contextual features reflecting the changes of difference between thyroid and other anatomies in the ultrasound diagnosis process are either omitted by 2D convolutions or weakly represented by 3D convolutions due to high redundancy. In this work, we propose a novel hybrid transformer UNet (H-TUNet) to segment thyroid glands in ultrasound sequences, which consists of two parts: (1) a 2D Transformer UNet is proposed by utilizing a designed multi-scale cross-attention transformer (MSCAT) module on every skipped connection of the UNet, so that the low-level features from different encoding layers are integrated and refined according to the high-level features in the decoding scheme, leading to better representation of differences between anatomies in one ultrasound frame; (2) a 3D Transformer UNet is proposed by applying a 3D self-attention transformer (SAT) module to the very bottom layer of 3D UNet, so that the contextual features representing visual differences between regions and consistencies within regions could be strengthened from successive frames in the video. The learning process of the H-TUNet is formulated as a unified end-to-end network, so the intra-frame feature extraction and inter-frame feature aggregation can be learned and optimized jointly. The proposed method was evaluated on Thyroid Segmentation in Ultrasonography Dataset (TSUD) and TG3k Dataset. Experimental results have demonstrated that our method outperformed other state-of-the-art methods with respect to the certain benchmarks for thyroid gland segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kin完成签到 ,获得积分10
2秒前
4秒前
善学以致用应助南烟采纳,获得10
6秒前
6秒前
平常的凡之完成签到,获得积分10
7秒前
打打应助zmy采纳,获得10
8秒前
笙璃完成签到 ,获得积分10
16秒前
浅尝离白应助FIN采纳,获得60
18秒前
18秒前
20秒前
学习要认真喽完成签到,获得积分10
22秒前
明亮紫易发布了新的文献求助30
25秒前
32秒前
34秒前
35秒前
felix发布了新的文献求助10
39秒前
felix发布了新的文献求助10
40秒前
42秒前
柯擎汉完成签到,获得积分10
43秒前
柯擎汉发布了新的文献求助10
45秒前
南北完成签到,获得积分10
50秒前
hahahan完成签到 ,获得积分10
50秒前
SciGPT应助柯擎汉采纳,获得10
50秒前
53秒前
浅尝离白应助FIN采纳,获得60
57秒前
方方别方完成签到 ,获得积分10
57秒前
南宫炽滔完成签到 ,获得积分10
58秒前
58秒前
zmy发布了新的文献求助10
59秒前
天道酬勤完成签到 ,获得积分10
59秒前
传奇3应助Adel采纳,获得10
1分钟前
鬼见愁应助xie采纳,获得10
1分钟前
yang完成签到 ,获得积分10
1分钟前
1分钟前
夏侯德东完成签到,获得积分10
1分钟前
1分钟前
Kk发布了新的文献求助10
1分钟前
dxwy完成签到,获得积分10
1分钟前
Bowman完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136964
求助须知:如何正确求助?哪些是违规求助? 2787951
关于积分的说明 7784004
捐赠科研通 2443993
什么是DOI,文献DOI怎么找? 1299591
科研通“疑难数据库(出版商)”最低求助积分说明 625477
版权声明 600970