Global Prior Transformer Network in Intelligent Borescope Inspection for Surface Damage Detection of Aeroengine Blade

计算机科学 人工智能 特征提取 计算机视觉 可视化 变压器 模式识别(心理学) 工程类 电压 电气工程
作者
Hongbing Shang,Jingyao Wu,Chuang Sun,Jinxin Liu,Xuefeng Chen,Ruqiang Yan
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (8): 8865-8877 被引量:10
标识
DOI:10.1109/tii.2022.3222300
摘要

Surface damage detection is vital for diagnosis and monitoring of aeroengine blade. At present, borescope inspection is the dominant technology. Several inspectors hold borescope to inspect the blades one by one through naked eyes on the apron. The inspection of turbine blades even requires drilling into narrow aeroengine tail nozzle. The manual visual inspection is high cost and low efficiency. To improve detection efficiency and economic benefit, we propose an intelligent borescope inspection method in this article. Facing the problem of weak damage information caused by background noise and unsatisfactory illumination, local window transformer network efficiently models pixel-to-pixel relations with the help of global self-attention mechanism, and shifted window strategy is used to conduct information exchange. The capacity of global modeling is beneficial for capturing detailed damage outline. Besides, to learn label relations as prior and embed it into model, semantic information of different damages is aggregated by a two-layer graph convolution network. The global label graph network provides global prior by modeling label dependencies based on the samples in dataset. Finally, the image features and label features are fused to provide rich feature representation for mode recognition and damage localization. We validate the effectiveness of the proposed method on three datasets, including simulated blade, aluminum, and real blade datasets. The results demonstrate that the proposed method has superior performance with 84.9 mAP on simulated blade dataset and satisfactory visualization results on real blade dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ddsgsd完成签到 ,获得积分10
刚刚
刚刚
背后的语海完成签到 ,获得积分10
1秒前
Song完成签到,获得积分10
1秒前
21完成签到 ,获得积分10
1秒前
金石为开完成签到,获得积分10
1秒前
西瓜完成签到 ,获得积分10
2秒前
淡定汉堡完成签到 ,获得积分10
2秒前
2秒前
Leon Lai完成签到,获得积分0
2秒前
chen完成签到 ,获得积分10
3秒前
3秒前
早日毕业完成签到,获得积分10
3秒前
3秒前
完美世界应助jin采纳,获得10
4秒前
feilong完成签到,获得积分10
4秒前
4秒前
4秒前
duan发布了新的文献求助10
5秒前
PrayOne完成签到 ,获得积分0
5秒前
米饭杀手发布了新的文献求助10
5秒前
5秒前
娇气的白卉完成签到,获得积分10
6秒前
怀先生完成签到,获得积分10
6秒前
范棒棒完成签到,获得积分20
6秒前
7秒前
gaoww完成签到,获得积分10
7秒前
LLY发布了新的文献求助10
7秒前
霍霍完成签到 ,获得积分10
7秒前
天天玩发布了新的文献求助10
7秒前
胡芸芸发布了新的文献求助10
8秒前
9秒前
落后晓绿发布了新的文献求助10
9秒前
秋老虎完成签到,获得积分10
9秒前
李喜喜完成签到,获得积分10
10秒前
柴柴完成签到,获得积分10
10秒前
Chem34完成签到,获得积分10
10秒前
sht完成签到,获得积分10
10秒前
CNJX完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256834
求助须知:如何正确求助?哪些是违规求助? 4419081
关于积分的说明 13754519
捐赠科研通 4292230
什么是DOI,文献DOI怎么找? 2355404
邀请新用户注册赠送积分活动 1351852
关于科研通互助平台的介绍 1312634