计算机科学
人工智能
特征提取
计算机视觉
可视化
变压器
模式识别(心理学)
工程类
电压
电气工程
作者
Hongbing Shang,Jingyao Wu,Chuang Sun,Jinxin Liu,Xuefeng Chen,Ruqiang Yan
出处
期刊:IEEE Transactions on Industrial Informatics
[Institute of Electrical and Electronics Engineers]
日期:2023-08-01
卷期号:19 (8): 8865-8877
被引量:10
标识
DOI:10.1109/tii.2022.3222300
摘要
Surface damage detection is vital for diagnosis and monitoring of aeroengine blade. At present, borescope inspection is the dominant technology. Several inspectors hold borescope to inspect the blades one by one through naked eyes on the apron. The inspection of turbine blades even requires drilling into narrow aeroengine tail nozzle. The manual visual inspection is high cost and low efficiency. To improve detection efficiency and economic benefit, we propose an intelligent borescope inspection method in this article. Facing the problem of weak damage information caused by background noise and unsatisfactory illumination, local window transformer network efficiently models pixel-to-pixel relations with the help of global self-attention mechanism, and shifted window strategy is used to conduct information exchange. The capacity of global modeling is beneficial for capturing detailed damage outline. Besides, to learn label relations as prior and embed it into model, semantic information of different damages is aggregated by a two-layer graph convolution network. The global label graph network provides global prior by modeling label dependencies based on the samples in dataset. Finally, the image features and label features are fused to provide rich feature representation for mode recognition and damage localization. We validate the effectiveness of the proposed method on three datasets, including simulated blade, aluminum, and real blade datasets. The results demonstrate that the proposed method has superior performance with 84.9 mAP on simulated blade dataset and satisfactory visualization results on real blade dataset.
科研通智能强力驱动
Strongly Powered by AbleSci AI