The classification and localization of crack using lightweight convolutional neural network with CBAM

卷积神经网络 一般化 面子(社会学概念) 特征(语言学) 计算机科学 结构工程 鉴定(生物学) 模式识别(心理学) 人工智能 工程类 数学 数学分析 哲学 社会学 生物 植物 语言学 社会科学
作者
Liujie Chen,Haodong Yao,Jiyang Fu,Ching‐Tai Ng
出处
期刊:Engineering Structures [Elsevier BV]
卷期号:275: 115291-115291 被引量:48
标识
DOI:10.1016/j.engstruct.2022.115291
摘要

Convolutional Neural Networks (CNNs) are currently often used for crack detection. However, the crack datasets collected in real engineering are imbalanced datasets and are affected by interference factors such as different illumination issues and the coexistence of various material crack images. Therefore, the generalization ability of the model itself and the ability to face imbalanced datasets is critical. In addition, a real engineering environment is usually low computational power environment. Therefore, it is undoubtedly more beneficial for the model to have a lightweight feature for practical applications. To address the above challenges in crack detection, MobileNetV3-Large is employed as the backbone combined with CBAM (Convolutional Block Attention Module) to gain MobileNetV3-Large-CBAM in this study. The classification and identification of crack are studied by using the open-source bridge crack dataset. MobileNetV3-Large-CBAM is compared with cutting-edge CNNs, and it verifies that the proposed model combined with the preferred Focal Loss has good performance in dealing with imbalanced datasets and hard samples. To verify the generalization ability of the proposed model, this paper further studies the crack datasets with various material and huge-width cracks under different illumination issues. Finally, the sliding window is adopted to perform crack detection and localization on the three randomly reconstructed crack images. The research results show that, compared with other CNNs, the proposed lightweight MobileNetV3-Large-CBAM combined with the preferred Focal Loss has better comprehensive performance, and the model size is 16.6 MB. I. For imbalanced datasets, the proposed model obtains the best results for crack classification. The Overall Accuracy (OA), F1-score, training speed, and classification speed of MobileNetV3-Large-CBAM are 95.90 %, 95.89 %, 101 images/second and 48 images/second, respectively. The proposed model has a balanced recognition accuracy for different crack categories, and the recognition accuracy for hard samples-irregular crack reaches 94.40 %. II. The proposed model has excellent generalization ability. For two test sets - various material cracks and huge-width cracks under different illumination issues, the OA of MobileNetV3-Large-CBAM reaches 99.66 % and 99.69 %, respectively, the accuracy of crack identification is 99.50 % and 100.00 %, and the accuracy of non-crack identification is 99.90 % and 99.50 %, respectively. III. For crack detection and localization, the model proposed in this paper combined with a sliding window, the accuracy of crack detection for three reconstructed images achieves 100 %, and the average crack localization accuracy achieves 98.40 %.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦完成签到,获得积分10
刚刚
3秒前
着慵懒时光的猫完成签到,获得积分10
5秒前
7秒前
7秒前
琪琪发布了新的文献求助10
8秒前
HWJ关闭了HWJ文献求助
9秒前
10秒前
10秒前
柠檬完成签到 ,获得积分10
12秒前
胡平完成签到,获得积分10
14秒前
Orange应助超帅蓝血采纳,获得10
16秒前
健忘的绿草完成签到,获得积分20
20秒前
l37u2n发布了新的文献求助10
21秒前
月满西楼完成签到,获得积分10
22秒前
23秒前
25秒前
WizBLue完成签到,获得积分10
26秒前
28秒前
CipherSage应助科研通管家采纳,获得10
28秒前
28秒前
斯文败类应助科研通管家采纳,获得10
28秒前
28秒前
英俊的铭应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
28秒前
WizBLue发布了新的文献求助10
30秒前
31秒前
l37u2n完成签到,获得积分10
33秒前
超帅蓝血发布了新的文献求助10
34秒前
Jiangzhibing发布了新的文献求助10
37秒前
杳鸢应助牛牛采纳,获得10
37秒前
41秒前
不着四六的岁月完成签到,获得积分10
42秒前
44秒前
不知道完成签到,获得积分10
45秒前
隐形曼青应助Jiangzhibing采纳,获得10
46秒前
正常兔子应助Jiangzhibing采纳,获得50
46秒前
SYLH应助ZhuYJ采纳,获得10
46秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951007
求助须知:如何正确求助?哪些是违规求助? 3496402
关于积分的说明 11081862
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 801003