清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

The classification and localization of crack using lightweight convolutional neural network with CBAM

卷积神经网络 一般化 面子(社会学概念) 特征(语言学) 计算机科学 结构工程 鉴定(生物学) 模式识别(心理学) 人工智能 工程类 数学 数学分析 哲学 社会学 生物 植物 语言学 社会科学
作者
Liujie Chen,Haodong Yao,Jiyang Fu,Ching‐Tai Ng
出处
期刊:Engineering Structures [Elsevier]
卷期号:275: 115291-115291 被引量:43
标识
DOI:10.1016/j.engstruct.2022.115291
摘要

Convolutional Neural Networks (CNNs) are currently often used for crack detection. However, the crack datasets collected in real engineering are imbalanced datasets and are affected by interference factors such as different illumination issues and the coexistence of various material crack images. Therefore, the generalization ability of the model itself and the ability to face imbalanced datasets is critical. In addition, a real engineering environment is usually low computational power environment. Therefore, it is undoubtedly more beneficial for the model to have a lightweight feature for practical applications. To address the above challenges in crack detection, MobileNetV3-Large is employed as the backbone combined with CBAM (Convolutional Block Attention Module) to gain MobileNetV3-Large-CBAM in this study. The classification and identification of crack are studied by using the open-source bridge crack dataset. MobileNetV3-Large-CBAM is compared with cutting-edge CNNs, and it verifies that the proposed model combined with the preferred Focal Loss has good performance in dealing with imbalanced datasets and hard samples. To verify the generalization ability of the proposed model, this paper further studies the crack datasets with various material and huge-width cracks under different illumination issues. Finally, the sliding window is adopted to perform crack detection and localization on the three randomly reconstructed crack images. The research results show that, compared with other CNNs, the proposed lightweight MobileNetV3-Large-CBAM combined with the preferred Focal Loss has better comprehensive performance, and the model size is 16.6 MB. I. For imbalanced datasets, the proposed model obtains the best results for crack classification. The Overall Accuracy (OA), F1-score, training speed, and classification speed of MobileNetV3-Large-CBAM are 95.90 %, 95.89 %, 101 images/second and 48 images/second, respectively. The proposed model has a balanced recognition accuracy for different crack categories, and the recognition accuracy for hard samples-irregular crack reaches 94.40 %. II. The proposed model has excellent generalization ability. For two test sets - various material cracks and huge-width cracks under different illumination issues, the OA of MobileNetV3-Large-CBAM reaches 99.66 % and 99.69 %, respectively, the accuracy of crack identification is 99.50 % and 100.00 %, and the accuracy of non-crack identification is 99.90 % and 99.50 %, respectively. III. For crack detection and localization, the model proposed in this paper combined with a sliding window, the accuracy of crack detection for three reconstructed images achieves 100 %, and the average crack localization accuracy achieves 98.40 %.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
30秒前
李健的小迷弟应助炫白采纳,获得10
31秒前
黑球发布了新的文献求助10
36秒前
54秒前
1分钟前
2分钟前
2分钟前
2分钟前
3分钟前
红油曲奇完成签到,获得积分10
4分钟前
4分钟前
颖宝老公完成签到,获得积分0
4分钟前
5分钟前
宝宝熊的熊宝宝完成签到,获得积分10
5分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
小二郎应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
乔杰完成签到 ,获得积分10
6分钟前
6分钟前
cjy完成签到,获得积分10
6分钟前
6分钟前
vassallo完成签到 ,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
8分钟前
赘婿应助gszy1975采纳,获得10
8分钟前
9分钟前
9分钟前
炫白发布了新的文献求助10
9分钟前
9分钟前
9分钟前
10分钟前
10分钟前
逃之姚姚完成签到 ,获得积分10
10分钟前
CHSLN完成签到 ,获得积分10
11分钟前
11分钟前
11分钟前
12分钟前
12分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3338996
求助须知:如何正确求助?哪些是违规求助? 2967044
关于积分的说明 8627866
捐赠科研通 2646460
什么是DOI,文献DOI怎么找? 1449226
科研通“疑难数据库(出版商)”最低求助积分说明 671343
邀请新用户注册赠送积分活动 660162