Predictive model for deep venous thrombosis caused by closed lower limb fracture after thromboprophylactic treatment.

医学 列线图 血栓形成 深静脉 回顾性队列研究 静脉血栓形成 入射(几何) 队列 临床实习 外科 阶段(地层学) 放射科 内科学 物理疗法 生物 光学 物理 古生物学
作者
Jia-jia xing,Y-H Fu,Z Song,Q Wang,T Ma,M Li,Y Zhuang,Zhiyu Li,Y-J Zhu,Wendy Tang,S-G Wang,Nanlan Yang,P-F Wang,K Zhang
出处
期刊:DOAJ: Directory of Open Access Journals - DOAJ 卷期号:26 (22): 8508-8522
标识
DOI:10.26355/eurrev_202211_30387
摘要

Currently, there are still no convincing clinical models predicting closed lower extremity fracture-associated deep vein thrombosis in patients treated through thromboprophylactic methods. We aimed at using two retrospective cohorts to develop and externally verify a clinical prediction model for deep vein thrombosis in patients treated with anticoagulants after suffering closed lower extremity fractures.We evaluated the patients' pre- and post-operatively, to accurately determine the predictive power of the biomarkers and clinical risk factors. Two retrospective cohorts were used for the development and external verification of a pre-operative clinical prediction model (development: n = 2,253; verification: n = 833) and post-operative clinical prediction model (development: n = 1,422; verification: n = 449), respectively.The C-indices were used to show the predicted incidence of objective thrombosis at the pre- and post-operative stage, which were then compared with the observed incidence of thrombosis in both cohorts. Biomarkers and clinical indicators were included in pre- and post-operative nomograms, which were adequately calibrated in both cohorts. The cross-validated C-indices of the pre- and post-operative clinical prediction models in the verification cohort were 0.706 (95% Cl, 0.67-0.74) and 0.875 (95% Cl, 0.84-0.91), respectively.We present our findings of novel pre- and post-operative nomograms for the prediction of deep venous thrombosis in patients who received thromboprophylaxis after suffering closed lower extremity fractures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水水的完成签到 ,获得积分10
刚刚
诚心的丹秋完成签到,获得积分10
1秒前
Nivis完成签到 ,获得积分10
2秒前
rui完成签到,获得积分10
3秒前
彭于晏应助Yuanyuan采纳,获得10
4秒前
橙星星完成签到,获得积分20
4秒前
priss111发布了新的文献求助10
4秒前
pine完成签到 ,获得积分10
5秒前
6秒前
山前明月完成签到,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助10
11秒前
OvO发布了新的文献求助10
13秒前
13秒前
孙浚涵发布了新的文献求助10
14秒前
SciGPT应助魂断红颜采纳,获得10
14秒前
年轻的醉冬完成签到 ,获得积分10
15秒前
15秒前
16秒前
丘比特应助唠叨的白曼采纳,获得10
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
18秒前
hatchio完成签到,获得积分10
18秒前
cc完成签到,获得积分10
18秒前
Petrichor发布了新的文献求助10
20秒前
Hhhhhhhhhhh完成签到,获得积分10
20秒前
依紫发布了新的文献求助10
20秒前
如意的冰双完成签到 ,获得积分10
21秒前
24秒前
24秒前
思源应助懒羊羊不吃糖采纳,获得10
25秒前
量子星尘发布了新的文献求助10
26秒前
26秒前
思源应助Yuanyuan采纳,获得10
26秒前
26秒前
27秒前
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729235
求助须知:如何正确求助?哪些是违规求助? 5317147
关于积分的说明 15316199
捐赠科研通 4876228
什么是DOI,文献DOI怎么找? 2619311
邀请新用户注册赠送积分活动 1568858
关于科研通互助平台的介绍 1525365