步态
医学
内旋
美第斯
物理医学与康复
外旋
口腔正畸科
物理疗法
解剖
外科
机械工程
工程类
作者
Enrico De Pieri,Johannes Cip,Reinald Brunner,Claudia Weidensteiner,Nathalie Alexander
标识
DOI:10.1016/j.gaitpost.2022.12.014
摘要
Femoral anteversion affects the lever arm and moment-generating capacity of the hip abductors, while an increased hip internal rotation during walking was proposed to be a compensatory mechanism to restore the abductive lever arm. Children with isolated increased femoral anteversion, however, do not always present a deficit in the net hip abduction moment during gait, suggesting that a more comprehensive understanding of the effect of morphology and motion on muscle forces and moments is needed to aid clinical decision making.Are muscle contributions to hip joint moments and muscle forces altered in patients with increased femoral anteversion and internally rotated gait pattern compared to a control group of typically developing children? And how would the functional role of the muscle be altered if the patients walked straight?This follow-up study compared patients with increased femoral anteversion (n = 42, 12.8 ± 1.9 years, femoral anteversion: 39.6 ± 6.9°) to controls (n = 9, 12.0 ± 3.0 years, femoral anteversion: 18.7 ± 4.1°). Muscle forces and moment contributions were calculated using personalized musculoskeletal models. Additionally, a hypothetical scenario, in which the gait of the controls was modelled with an anteverted femoral morphology, was used to understand what would happen if the patients walked straight.Gluteus medius abductive contribution was lower in patients compared to controls, despite a comparable net abduction moment around the hip. Patients presented lower muscle forces. However, if modelled to walk straight, they would require higher forces as well as a larger co-contraction of both hip internal and external rotators in the transversal plane.This study suggests that patients with increased femoral anteversion walking with an internally rotated gait pattern present lower muscle forces, but when modelled to walk straight muscle forces increase. The current results provide important information to better understand this condition and improve treatment recommendations in these patients.
科研通智能强力驱动
Strongly Powered by AbleSci AI