Mechanical Stress Prediction of an Aircraft Torque Tube Based on the Neural Network Application

起飞 人工神经网络 结构工程 有限元法 压力(语言学) 扭矩 工程类 计算机科学 汽车工程 人工智能 物理 语言学 哲学 热力学
作者
Michal Hovanec,Peter Korba,Miroslav Spodniak,Samer Al-Rabeei,Branislav Rácek
出处
期刊:Applied sciences [MDPI AG]
卷期号:13 (7): 4215-4215 被引量:1
标识
DOI:10.3390/app13074215
摘要

The use of a predictive approach in the aviation industry is an important factor in aircraft maintenance. The main goal of this study was to create a new method for stress prediction during the operation of parts and to apply it on an aircraft torque tube (ATT). The method operates in real time during taxiing, takeoff, and landing using a neural network (NN). The stress calculated by the proposed method can be used in the future to calculate fatigue life and to save maintenance costs related to ATTs. This can play an important role in the evaluation of tests, such as unobserved crack failure. The main contribution of the presented methodology is in the fourth part of this study, where a new method of mechanical-stress prediction using a NN is described. The method essentially replaces finite element methods (FEMs), which require large amounts of time. The new method is much faster than commonly available methods, as the NN predicts the mechanical ATT stress in 0.00046 s, whereas the solution time using FEM is 1716 s for the same load step. In total, 36 regimes were calculated by FEMs in 17 h, 9 min and 36 s, whereas the novel method calculated the ATT stress for 36 regimes in 0.0166 s. The accuracy was also high, with R above 0.99. The main innovation presented in this study is the development of a method that can predict ATT stress in a very short time with a high percentage of accuracy and that can be used for stress and life prediction during the operation of parts. The partial results from the experimental tensile tests are also presented, and they are used for FEM calculations. The FEM results are used as inputs for the stress prediction by the NN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杳鸢应助mc1220采纳,获得10
刚刚
rosa完成签到,获得积分10
刚刚
郑小七发布了新的文献求助10
1秒前
Tianxu Li完成签到,获得积分10
2秒前
2秒前
九川发布了新的文献求助10
3秒前
Lucas应助无限的隶采纳,获得10
3秒前
胡雅琴完成签到,获得积分10
3秒前
sakurai完成签到,获得积分10
4秒前
清歌扶酒关注了科研通微信公众号
4秒前
二尖瓣后叶举报ww求助涉嫌违规
4秒前
烟花应助轻松笙采纳,获得10
4秒前
沉默凡桃完成签到,获得积分10
5秒前
5秒前
luuuuuing发布了新的文献求助30
5秒前
啦啦啦完成签到,获得积分10
5秒前
小可发布了新的文献求助10
5秒前
6秒前
LKGG完成签到 ,获得积分10
6秒前
7秒前
7秒前
7秒前
周士乐发布了新的文献求助10
7秒前
Sunshine发布了新的文献求助10
7秒前
呼吸之野完成签到,获得积分10
8秒前
害怕的小懒虫完成签到,获得积分10
8秒前
思源应助Nefelibata采纳,获得10
9秒前
妮儿发布了新的文献求助10
9秒前
BareBear应助rosa采纳,获得10
9秒前
沉默凡桃发布了新的文献求助10
10秒前
Orange应助9℃采纳,获得10
10秒前
10秒前
一只橘子完成签到 ,获得积分10
10秒前
11秒前
韭黄发布了新的文献求助10
11秒前
西瓜发布了新的文献求助10
11秒前
Ll发布了新的文献求助10
11秒前
11秒前
wcy关注了科研通微信公众号
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759