Mechanical Stress Prediction of an Aircraft Torque Tube Based on the Neural Network Application

起飞 人工神经网络 结构工程 有限元法 压力(语言学) 扭矩 工程类 计算机科学 汽车工程 人工智能 物理 语言学 哲学 热力学
作者
Michal Hovanec,Peter Korba,Miroslav Spodniak,Samer Al-Rabeei,Branislav Rácek
出处
期刊:Applied sciences [MDPI AG]
卷期号:13 (7): 4215-4215 被引量:1
标识
DOI:10.3390/app13074215
摘要

The use of a predictive approach in the aviation industry is an important factor in aircraft maintenance. The main goal of this study was to create a new method for stress prediction during the operation of parts and to apply it on an aircraft torque tube (ATT). The method operates in real time during taxiing, takeoff, and landing using a neural network (NN). The stress calculated by the proposed method can be used in the future to calculate fatigue life and to save maintenance costs related to ATTs. This can play an important role in the evaluation of tests, such as unobserved crack failure. The main contribution of the presented methodology is in the fourth part of this study, where a new method of mechanical-stress prediction using a NN is described. The method essentially replaces finite element methods (FEMs), which require large amounts of time. The new method is much faster than commonly available methods, as the NN predicts the mechanical ATT stress in 0.00046 s, whereas the solution time using FEM is 1716 s for the same load step. In total, 36 regimes were calculated by FEMs in 17 h, 9 min and 36 s, whereas the novel method calculated the ATT stress for 36 regimes in 0.0166 s. The accuracy was also high, with R above 0.99. The main innovation presented in this study is the development of a method that can predict ATT stress in a very short time with a high percentage of accuracy and that can be used for stress and life prediction during the operation of parts. The partial results from the experimental tensile tests are also presented, and they are used for FEM calculations. The FEM results are used as inputs for the stress prediction by the NN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Foremelon完成签到,获得积分10
刚刚
bofu发布了新的文献求助10
刚刚
超帅柚子完成签到 ,获得积分10
3秒前
ly完成签到,获得积分10
4秒前
6秒前
6秒前
SCINEXUS应助多多发SCI采纳,获得20
6秒前
英俊的铭应助平常雨寒采纳,获得10
7秒前
bofu发布了新的文献求助10
7秒前
木木木木完成签到,获得积分10
9秒前
klb13应助动听幻儿采纳,获得20
10秒前
10秒前
领导范儿应助baby的跑男采纳,获得10
10秒前
11秒前
nihaoya172发布了新的文献求助10
11秒前
bofu发布了新的文献求助10
15秒前
16秒前
小天才123发布了新的文献求助10
16秒前
科研通AI2S应助寂寞的梦芝采纳,获得10
16秒前
18秒前
ww发布了新的文献求助10
19秒前
领导范儿应助FHW采纳,获得10
19秒前
酷波er应助彪壮的一曲采纳,获得10
21秒前
多多发SCI完成签到,获得积分10
22秒前
23秒前
阔达达完成签到,获得积分10
24秒前
24秒前
bofu发布了新的文献求助10
26秒前
26秒前
等待世平完成签到,获得积分10
27秒前
淡淡从安完成签到 ,获得积分10
27秒前
29秒前
29秒前
30秒前
30秒前
失眠的怀柔完成签到 ,获得积分10
30秒前
机智的傲白应助华华爸采纳,获得30
30秒前
科研小民工完成签到,获得积分10
30秒前
深情安青应助ww采纳,获得30
31秒前
十一发布了新的文献求助10
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299813
求助须知:如何正确求助?哪些是违规求助? 2934662
关于积分的说明 8470165
捐赠科研通 2608229
什么是DOI,文献DOI怎么找? 1424075
科研通“疑难数据库(出版商)”最低求助积分说明 661827
邀请新用户注册赠送积分活动 645574