已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Tomato recognition and location algorithm based on improved YOLOv5

增采样 计算机科学 失真(音乐) 试验装置 人工智能 算法 趋同(经济学) 数学 模式识别(心理学) 图像(数学) 放大器 计算机网络 带宽(计算) 经济 经济增长
作者
Tianhua Li,Meng Sun,Qinghai He,Guanshan Zhang,Guoying Shi,Xiaoming Ding,Sen Lin
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:208: 107759-107759 被引量:37
标识
DOI:10.1016/j.compag.2023.107759
摘要

In order to meet the requirements of target detection and location for intelligent tomato picking, a recognition and location algorithm based on improved YOLOv5s is proposed in this paper. The CARAFE module structure was used to optimize the upsampling algorithm of YOLOv5s, which increased the receptive field of the network while maintaining the lightweight. EIoU and Quality Focal Loss were introduced to optimize the loss function of the network, which solved the problem of reduced accuracy caused by uneven samples, and at the same time accelerated the training convergence speed and improved the regression accuracy. The improved model is denoted as YOLOv5s-CQE. Compared with YOLOv5s, the mAP_0.5 and mAP_0.5:0.95 of YOLOv5s-CQE was increased by 1.67 and 3.43 percentages points, respectively. The recognition accuracy of YOLOv5s-CQE model in the test set was 99.77%, which had increased by 2.40 percentages points compared with before improvement, and was 4.10, 6.47 and 3.03 percentages points higher than that of the lightweight networks YOLOv4-tiny, YOLOv5-Lite-e and YOLOv5-Lite-s, respectively. Compared with YOLOv7 and Faster RCNN, the recognition accuracy rate was increased by 1.69, 3.97 percentages points respectively. In order to improve the accuracy of positioning, distortion removal and ROI clipping were carried out on the obtained images. The accuracy of location was tested by laboratory positioning test and field picking test. The results showed the total average errors decreased by 6.65 mm compared with those before distortion removal, and the field positioning accuracy was improved by 6.67 percentages points. The experimental results showed that the algorithm in this paper had the advantages of high precision, fast detection speed and strong robustness, which provided a theoretical basis for intelligent tomato picking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助congcong采纳,获得10
6秒前
7秒前
整齐凝竹完成签到 ,获得积分10
10秒前
蜜呐发布了新的文献求助10
11秒前
11秒前
AZN完成签到 ,获得积分10
13秒前
13秒前
xsy完成签到 ,获得积分10
14秒前
充电宝应助牛牛眉目采纳,获得10
15秒前
binbin发布了新的文献求助10
17秒前
年轻馒头应助蜜呐采纳,获得10
19秒前
医学牲完成签到,获得积分10
24秒前
科研小白完成签到,获得积分10
26秒前
29秒前
30秒前
念安发布了新的文献求助10
34秒前
吡咯爱成环完成签到,获得积分0
34秒前
34秒前
研友_Z6W9B8发布了新的文献求助20
35秒前
36秒前
36秒前
39秒前
沈万熙发布了新的文献求助10
40秒前
SS发布了新的文献求助10
40秒前
猪猪hero应助科研通管家采纳,获得30
41秒前
猪猪hero应助科研通管家采纳,获得10
41秒前
猪猪hero应助科研通管家采纳,获得10
41秒前
SciGPT应助科研通管家采纳,获得10
42秒前
汉堡包应助科研通管家采纳,获得10
42秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
ding应助科研通管家采纳,获得10
42秒前
FIN应助科研通管家采纳,获得10
42秒前
42秒前
42秒前
pywangsmmu92完成签到,获得积分10
42秒前
桐桐应助念安采纳,获得10
45秒前
46秒前
46秒前
48秒前
靖柔发布了新的文献求助10
51秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965451
求助须知:如何正确求助?哪些是违规求助? 3510727
关于积分的说明 11154880
捐赠科研通 3245180
什么是DOI,文献DOI怎么找? 1792779
邀请新用户注册赠送积分活动 874088
科研通“疑难数据库(出版商)”最低求助积分说明 804168