Tomato recognition and location algorithm based on improved YOLOv5

增采样 计算机科学 失真(音乐) 试验装置 人工智能 算法 趋同(经济学) 数学 模式识别(心理学) 图像(数学) 计算机网络 经济增长 经济 放大器 带宽(计算)
作者
Tianhua Li,Meng Sun,Qinghai He,Guanshan Zhang,Guoying Shi,Xiaoming Ding,Sen Lin
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:208: 107759-107759 被引量:37
标识
DOI:10.1016/j.compag.2023.107759
摘要

In order to meet the requirements of target detection and location for intelligent tomato picking, a recognition and location algorithm based on improved YOLOv5s is proposed in this paper. The CARAFE module structure was used to optimize the upsampling algorithm of YOLOv5s, which increased the receptive field of the network while maintaining the lightweight. EIoU and Quality Focal Loss were introduced to optimize the loss function of the network, which solved the problem of reduced accuracy caused by uneven samples, and at the same time accelerated the training convergence speed and improved the regression accuracy. The improved model is denoted as YOLOv5s-CQE. Compared with YOLOv5s, the mAP_0.5 and mAP_0.5:0.95 of YOLOv5s-CQE was increased by 1.67 and 3.43 percentages points, respectively. The recognition accuracy of YOLOv5s-CQE model in the test set was 99.77%, which had increased by 2.40 percentages points compared with before improvement, and was 4.10, 6.47 and 3.03 percentages points higher than that of the lightweight networks YOLOv4-tiny, YOLOv5-Lite-e and YOLOv5-Lite-s, respectively. Compared with YOLOv7 and Faster RCNN, the recognition accuracy rate was increased by 1.69, 3.97 percentages points respectively. In order to improve the accuracy of positioning, distortion removal and ROI clipping were carried out on the obtained images. The accuracy of location was tested by laboratory positioning test and field picking test. The results showed the total average errors decreased by 6.65 mm compared with those before distortion removal, and the field positioning accuracy was improved by 6.67 percentages points. The experimental results showed that the algorithm in this paper had the advantages of high precision, fast detection speed and strong robustness, which provided a theoretical basis for intelligent tomato picking.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
关我屁事完成签到 ,获得积分10
2秒前
金宁完成签到,获得积分10
4秒前
miaomliu完成签到,获得积分10
7秒前
乐乐应助裘山彤采纳,获得10
11秒前
喻槿发布了新的文献求助10
12秒前
23秒前
23秒前
喻槿完成签到,获得积分10
28秒前
qiao发布了新的文献求助10
28秒前
英俊的铭应助喻槿采纳,获得10
33秒前
隐形曼青应助lcr采纳,获得10
34秒前
35秒前
37秒前
37秒前
37秒前
38秒前
38秒前
38秒前
38秒前
38秒前
38秒前
38秒前
在水一方应助科研通管家采纳,获得10
38秒前
英俊的铭应助科研通管家采纳,获得10
39秒前
39秒前
kiki完成签到,获得积分10
40秒前
魏头头发布了新的文献求助10
41秒前
辣目童子完成签到 ,获得积分10
44秒前
45秒前
Lucycomplex完成签到,获得积分10
47秒前
程昱发布了新的文献求助10
52秒前
韦雪莲完成签到 ,获得积分10
55秒前
魏头头完成签到 ,获得积分10
55秒前
katata完成签到 ,获得积分10
57秒前
小新完成签到 ,获得积分10
1分钟前
传奇3应助xdc采纳,获得10
1分钟前
务实笑柳完成签到 ,获得积分10
1分钟前
孙嘉畯完成签到 ,获得积分10
1分钟前
1分钟前
如意的冰双完成签到 ,获得积分10
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5852126
求助须知:如何正确求助?哪些是违规求助? 6276113
关于积分的说明 15627658
捐赠科研通 4968034
什么是DOI,文献DOI怎么找? 2678871
邀请新用户注册赠送积分活动 1623127
关于科研通互助平台的介绍 1579506