电解质
材料科学
电导率
离子电导率
分析化学(期刊)
X射线光电子能谱
快离子导体
电化学
陶瓷
化学稳定性
化学工程
物理化学
化学
电极
冶金
色谱法
工程类
作者
Shaoxiong Han,Ziqi Wang,Yue Ma,Miao Yang,Xiaomin Wang,Yong Wang,Yongzhen Wang
标识
DOI:10.26599/jac.2023.9220749
摘要
The garnet-type electrolyte is one of the most promising solid-state electrolytes due to its high ionic conductivity and wide electrochemical window. However, such electrolytes generate Li2CO3 in the air, leading to an increase in impedance, which greatly limits their practical application. In turn, high-entropy ceramics can improve phase stability due to the high entropy effect. Herein, the high-entropy garnet (HEG) Li6.2La3(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)2O12 (LL(ZrHfTiNbTa)O) solid-state electrolyte was synthesized by the solid-state reaction method. The XRD, XPS, EIS, and SEM characterizations indicated that LL(ZrHfTiNbTa)O electrolyte has excellent air stability. The room temperature conductivity of LL(ZrHfTiNbTa)O can be maintained at ~1.42×10-4 S/cm after exposure to air for 2 months. Single-element doped garnets were synthesized to explain the role of different elements and the mechanism of air stabilization. In addition, the Li/LL(ZrHfTiNbTa)O/Li symmetric cell cycle is stable over 600 h and the critical current density (CCD) is 1.24 mA cm-2, indicating remarkable stability of the Li/LL(ZrHfTiNbTa)O interface. Moreover, the LiFePO4/LL(ZrHfTiNbTa)O/Li cell shows excellent rate performance at 30 ℃. These results suggest that high entropy ceramics can be one of the strategies to improve the performance of solid-state electrolytes in the future due to their unique effects.
科研通智能强力驱动
Strongly Powered by AbleSci AI