Fast ion-conducting high-entropy garnet solid-state electrolytes with excellent air stability

电解质 材料科学 电导率 离子电导率 分析化学(期刊) X射线光电子能谱 快离子导体 电化学 陶瓷 化学稳定性 化学工程 物理化学 化学 电极 冶金 色谱法 工程类
作者
Shaoxiong Han,Ziqi Wang,Yue Ma,Miao Yang,Xiaomin Wang,Yong Wang,Yongzhen Wang
出处
期刊:Journal of Advanced Ceramics [Springer Nature]
卷期号:12 (6): 1201-1213 被引量:30
标识
DOI:10.26599/jac.2023.9220749
摘要

The garnet-type electrolyte is one of the most promising solid-state electrolytes due to its high ionic conductivity and wide electrochemical window. However, such electrolytes generate Li2CO3 in the air, leading to an increase in impedance, which greatly limits their practical application. In turn, high-entropy ceramics can improve phase stability due to the high entropy effect. Herein, the high-entropy garnet (HEG) Li6.2La3(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)2O12 (LL(ZrHfTiNbTa)O) solid-state electrolyte was synthesized by the solid-state reaction method. The XRD, XPS, EIS, and SEM characterizations indicated that LL(ZrHfTiNbTa)O electrolyte has excellent air stability. The room temperature conductivity of LL(ZrHfTiNbTa)O can be maintained at ~1.42×10-4 S/cm after exposure to air for 2 months. Single-element doped garnets were synthesized to explain the role of different elements and the mechanism of air stabilization. In addition, the Li/LL(ZrHfTiNbTa)O/Li symmetric cell cycle is stable over 600 h and the critical current density (CCD) is 1.24 mA cm-2, indicating remarkable stability of the Li/LL(ZrHfTiNbTa)O interface. Moreover, the LiFePO4/LL(ZrHfTiNbTa)O/Li cell shows excellent rate performance at 30 ℃. These results suggest that high entropy ceramics can be one of the strategies to improve the performance of solid-state electrolytes in the future due to their unique effects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
984295567完成签到,获得积分10
刚刚
zxcxcxzcxz发布了新的文献求助10
1秒前
1秒前
GH发布了新的文献求助30
2秒前
Owen应助yosh采纳,获得10
2秒前
leelmomimi发布了新的文献求助10
3秒前
Catalina_S发布了新的文献求助20
3秒前
睡睡完成签到,获得积分20
3秒前
4秒前
4秒前
大个应助笔墨留香采纳,获得10
5秒前
984295567发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
昕想事成完成签到,获得积分10
8秒前
8秒前
huaming发布了新的文献求助10
8秒前
9秒前
zhangxiao发布了新的文献求助10
11秒前
12秒前
Water完成签到,获得积分10
13秒前
小刘完成签到 ,获得积分10
13秒前
伊伊完成签到,获得积分10
14秒前
Sj泽发布了新的文献求助10
14秒前
16秒前
我笑着童年完成签到,获得积分10
16秒前
TeN_nnG完成签到,获得积分10
17秒前
17秒前
18秒前
漏漏漏发布了新的文献求助20
18秒前
善学以致用应助huaming采纳,获得10
18秒前
18秒前
CipherSage应助浮华采纳,获得10
19秒前
20秒前
赘婿应助sia采纳,获得30
20秒前
21秒前
大雁发布了新的文献求助10
22秒前
伍六七发布了新的文献求助20
22秒前
奈义武发布了新的文献求助10
23秒前
隐形的杨发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532418
求助须知:如何正确求助?哪些是违规求助? 4621121
关于积分的说明 14577059
捐赠科研通 4561034
什么是DOI,文献DOI怎么找? 2499113
邀请新用户注册赠送积分活动 1479059
关于科研通互助平台的介绍 1450310