贝叶斯优化
贝叶斯线性回归
高斯过程
贝叶斯概率
计算机科学
后验概率
蒙特卡罗方法
边际似然
克里金
数学优化
替代模型
贝叶斯推理
算法
高斯分布
人工智能
统计
机器学习
数学
物理
量子力学
出处
期刊:Apress eBooks
[Apress]
日期:2023-01-01
卷期号:: 101-130
标识
DOI:10.1007/978-1-4842-9063-7_4
摘要
So far, we have grasped the main components of a Bayesian optimization procedure: a surrogate model that provides posterior estimates on the mean and uncertainty of the underlying objective function and an acquisition function that guides the search for the next sampling location based on its expected gain in the marginal utility. Efficiently calculating the posterior distributions becomes essential in the case of parallel Bayesian optimization and Monte Carlo acquisition functions. This branch evaluates multiple points simultaneously discussed in a later chapter.
科研通智能强力驱动
Strongly Powered by AbleSci AI