Hierarchical Contrastive Learning Enhanced Heterogeneous Graph Neural Network

计算机科学 人工智能 图形 模式(遗传算法) 人工神经网络 机器学习 理论计算机科学
作者
Nian Liu,Xiao Wang,Hui Han,Chuan Shi
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:35 (10): 10884-10896 被引量:6
标识
DOI:10.1109/tkde.2023.3264691
摘要

Heterogeneous graph neural networks (HGNNs) as an emerging technique have shown superior capacity of dealing with heterogeneous information network (HIN). However, most HGNNs follow a semi-supervised learning manner, which notably limits their wide use in reality since labels are usually scarce in real applications. Recently, contrastive learning, a self-supervised method, becomes one of the most exciting learning paradigms and shows great potential when there are no labels. In this paper, we study the problem of self-supervised HGNNs and propose a novel co-contrastive learning mechanism for HGNNs, named HeCo. Different from traditional contrastive learning which only focuses on contrasting positive and negative samples, HeCo employs cross-view contrastive mechanism. Specifically, two views of a HIN (network schema and meta-path views) are proposed to learn node embeddings, so as to capture both of local and high-order structures simultaneously. Then the cross-view contrastive learning, as well as a view mask mechanism, is proposed, which is able to extract the positive and negative embeddings from two views. This enables the two views to collaboratively supervise each other and finally learn high-level node embeddings. Moreover, to further boost the performance of HeCo, two additional methods are designed to generate harder negative samples with high quality. The essence of HeCo is to make positive samples from different views close to each other by cross-view contrast, and learn the factors invariant to two proposed views. However, besides the invariant factors, view-specific factors complementally provide the diverse structure information between different nodes, which also should be contained into the final embeddings. Therefore, we need to further explore each view independently and propose a modified model, called HeCo++. Specifically, HeCo++ conducts hierarchical contrastive learning, including cross-view and intra-view contrasts, which aims to enhance the mining of respective structures. Extensive experiments conducted on a variety of real-world networks show the superior performance of the proposed methods over the state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小希完成签到,获得积分10
刚刚
Akim应助愤怒的qiang采纳,获得10
刚刚
1秒前
1秒前
2秒前
sfdghik发布了新的文献求助10
2秒前
3秒前
严笑容发布了新的文献求助10
5秒前
sfdghik完成签到,获得积分10
7秒前
沐沐羚完成签到,获得积分10
9秒前
小希驳回了烟花应助
9秒前
9秒前
今后应助晏啊采纳,获得10
10秒前
10秒前
12秒前
Ultraviolet发布了新的文献求助10
14秒前
15秒前
16秒前
天天快乐应助知性的采珊采纳,获得10
17秒前
Lucas应助知性的采珊采纳,获得10
17秒前
虚心傲丝发布了新的文献求助30
19秒前
tang_c完成签到,获得积分10
24秒前
乐乐应助宣孤菱采纳,获得10
25秒前
26秒前
争取不秃顶的医学僧完成签到,获得积分10
26秒前
27秒前
漂亮幻莲发布了新的文献求助10
27秒前
虚心傲丝完成签到,获得积分10
27秒前
28秒前
29秒前
glj完成签到,获得积分10
30秒前
30秒前
30秒前
zho发布了新的文献求助10
30秒前
Jasper应助酷炫的面包采纳,获得10
30秒前
榴莲发布了新的文献求助10
30秒前
chinaclfeng完成签到,获得积分10
30秒前
Abai发布了新的文献求助10
31秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737545
求助须知:如何正确求助?哪些是违规求助? 3281271
关于积分的说明 10024202
捐赠科研通 2998002
什么是DOI,文献DOI怎么找? 1644955
邀请新用户注册赠送积分活动 782443
科研通“疑难数据库(出版商)”最低求助积分说明 749794