生物炭
吸附
化学
环境修复
环境化学
镉
朗缪尔吸附模型
吸附
稻草
土壤污染
钝化
零价铁
热解
核化学
土壤水分
污染
无机化学
有机化学
土壤科学
地质学
生物
图层(电子)
生态学
作者
Yihao Wang,Yubo Yan,Chao He,Feng Ya,Aminu Darma,Jianjun Yang
标识
DOI:10.1016/j.envpol.2024.123969
摘要
The issue of cadmium (Cd) contamination in alkaline soils is escalating, necessitating the prompt implementation of effective passivation strategies. Biochar has gained significant attention for its potential in immobilizing heavy metals; however, the suitability of biochar as a remediation material and its micro-scale interaction mechanisms with Cd under alkaline conditions remain unclear. Rape straw (RS) were pyrolyzed at 400°C (RB400) and 700°C (RB700) to produce biochar. Adsorption and soil incubation experiments were carried out to assess the feasibility of using rape straw derived biochar pyrolyze at different temperatures and understanding their remediation mechanisms in alkaline environments. The sorption capacity for Cd immobilization was evaluated using sorption isotherms, revealing that RB700 exhibited enhanced Cd sorption performance with a maximum sorption capacity of 119.33 mg g-1 calculated from the Langmuir isotherm equation at pH 8. Cd L3-edge X-ray sorption near-edge structure (XANES) spectroscopy analysis confirmed that the dominant sorption species of Cd were organic Cd in RB400, with CdCO3 precipitation increased to 73.9% in RB700. Solid-state 13C nuclear magnetic resonance (13C-NMR) spectroscopy demonstrated that aromatic and carboxyl C functional groups are involved in the organic sorption of Cd through complexation and Cd2+-π interactions in alkaline solutions. The precipitation of CdCO3 in RB700 may resulted in a more effective passivation effect compared to RB400, leading to a significant 15.54% reduction in the DTPA-Cd content in Cd-contaminated soil. These findings highlight the effective Cd passivation Cd in alkaline environments by rape straw derived biochar, providing new molecular insights into the Cd retention mechanism of biochar. Furthermore, it presents novel ideas for improving remediation approaches for alkaline Cd-contaminated soils.
科研通智能强力驱动
Strongly Powered by AbleSci AI