Remaining life prediction of rolling bearings with secondary feature selection and BSBiLSTM

超参数 方位(导航) 特征选择 计算机科学 约束(计算机辅助设计) 滚动轴承 人工智能 选择(遗传算法) 时域 特征(语言学) 振动 模式识别(心理学) 机器学习 工程类 哲学 物理 机械工程 量子力学 语言学 计算机视觉
作者
Feng Song,Zhihai Wang,Xiaoqin Liu,Guoai Ren,Tao Liu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (7): 076127-076127 被引量:6
标识
DOI:10.1088/1361-6501/ad3ea6
摘要

Abstract Rolling element bearings are critical components in rotating machinery. To tackle the problem of difficult to accurately characterize the operating state of rolling bearings caused by irrelevance and varying sensitivity of multiple features to performance degradation, and introduction of subjective errors in determination of hyperparameters of deep learning models, which can affect the accuracy and efficiency of remaining useful life (RUL) prediction. To address these challenges, this paper proposed a novel RUL prediction method for rolling bearings with secondary feature selection and Bayesian optimization of self-attention mechanisms for bidirectional long short-term memory (BSBiLSTM). Firstly, multi-domain features are extracted from noise-reduced vibration signals. Then, a three-criterion constraint-based feature selection algorithm is used and a secondary selection algorithm with Pearson correlation coefficient is proposed to improve data quality. Next, the 3 σ criterion is integrated to determine the first prediction time for rolling bearings and to divide the degradation stage. Subsequently, the BiLSTM model with Bayesian optimization and self-attention mechanism is proposed to predict the RUL of rolling bearings to further improve the algorithm efficiency. Finally, experimental validation is carried out based on the PRONOSTIA platform dataset and the XJTU-SY rolling bearing dataset, and the results show that the method proposed in this paper is better than many mainstream life prediction methods for rolling bearings at present, and the prediction accuracy is higher.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
majf发布了新的文献求助10
刚刚
刚刚
BowieHuang应助Limeyo采纳,获得10
刚刚
郑昕怡完成签到,获得积分10
刚刚
xyg发布了新的文献求助10
刚刚
挽手余生发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
glorriiia发布了新的文献求助10
1秒前
zxp12373发布了新的文献求助10
1秒前
2秒前
2秒前
天才罗发布了新的文献求助10
2秒前
2秒前
Orange应助吾星安处采纳,获得10
2秒前
大意的白翠完成签到,获得积分10
3秒前
Criminology34应助璇璇采纳,获得10
3秒前
震动的糖豆完成签到,获得积分20
3秒前
自然妙旋完成签到,获得积分10
3秒前
4秒前
今后应助欣喜的硬币采纳,获得10
5秒前
5秒前
自由元菱完成签到,获得积分10
5秒前
5秒前
鬼荒十三发布了新的文献求助10
5秒前
wanci应助jou采纳,获得10
5秒前
GKPFT完成签到,获得积分10
6秒前
嘿嘿关注了科研通微信公众号
6秒前
36456657应助梓慧采纳,获得10
6秒前
jcm发布了新的文献求助10
6秒前
隐形曼青应助三伏天采纳,获得10
7秒前
7秒前
7秒前
黄大师完成签到,获得积分10
7秒前
思源应助zxp12373采纳,获得10
7秒前
vict完成签到,获得积分10
7秒前
zjt完成签到,获得积分10
7秒前
8秒前
8秒前
ytnju完成签到,获得积分10
8秒前
8秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619329
求助须知:如何正确求助?哪些是违规求助? 4704120
关于积分的说明 14925930
捐赠科研通 4759609
什么是DOI,文献DOI怎么找? 2550538
邀请新用户注册赠送积分活动 1513291
关于科研通互助平台的介绍 1474401