已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Remaining life prediction of rolling bearings with secondary feature selection and BSBiLSTM

超参数 方位(导航) 特征选择 计算机科学 约束(计算机辅助设计) 滚动轴承 人工智能 选择(遗传算法) 时域 特征(语言学) 振动 模式识别(心理学) 机器学习 工程类 语言学 哲学 机械工程 物理 量子力学 计算机视觉
作者
Feng Song,Zhihai Wang,Xiaoqin Liu,Guoai Ren,Tao Liu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (7): 076127-076127 被引量:6
标识
DOI:10.1088/1361-6501/ad3ea6
摘要

Abstract Rolling element bearings are critical components in rotating machinery. To tackle the problem of difficult to accurately characterize the operating state of rolling bearings caused by irrelevance and varying sensitivity of multiple features to performance degradation, and introduction of subjective errors in determination of hyperparameters of deep learning models, which can affect the accuracy and efficiency of remaining useful life (RUL) prediction. To address these challenges, this paper proposed a novel RUL prediction method for rolling bearings with secondary feature selection and Bayesian optimization of self-attention mechanisms for bidirectional long short-term memory (BSBiLSTM). Firstly, multi-domain features are extracted from noise-reduced vibration signals. Then, a three-criterion constraint-based feature selection algorithm is used and a secondary selection algorithm with Pearson correlation coefficient is proposed to improve data quality. Next, the 3 σ criterion is integrated to determine the first prediction time for rolling bearings and to divide the degradation stage. Subsequently, the BiLSTM model with Bayesian optimization and self-attention mechanism is proposed to predict the RUL of rolling bearings to further improve the algorithm efficiency. Finally, experimental validation is carried out based on the PRONOSTIA platform dataset and the XJTU-SY rolling bearing dataset, and the results show that the method proposed in this paper is better than many mainstream life prediction methods for rolling bearings at present, and the prediction accuracy is higher.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
shanyuyulai发布了新的文献求助10
刚刚
xx完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
Rollin发布了新的文献求助10
3秒前
4秒前
jike发布了新的文献求助10
4秒前
窦逗豆完成签到,获得积分10
4秒前
6秒前
加油发布了新的文献求助10
6秒前
搜集达人应助Wdw2236采纳,获得10
6秒前
时光发布了新的文献求助10
6秒前
泷云完成签到,获得积分10
8秒前
8秒前
10秒前
10秒前
10秒前
DDDDai完成签到 ,获得积分10
10秒前
11秒前
elio0113发布了新的文献求助10
11秒前
善学以致用应助xxdn采纳,获得10
12秒前
nusiew发布了新的文献求助10
13秒前
13秒前
隐形曼青应助呆萌的奎采纳,获得10
13秒前
AN应助小明采纳,获得10
14秒前
15秒前
彭于晏应助haha采纳,获得10
15秒前
15秒前
bingki发布了新的文献求助10
15秒前
舒适的淇完成签到,获得积分10
15秒前
16秒前
许许完成签到,获得积分10
17秒前
林筱辰发布了新的文献求助10
17秒前
17秒前
18秒前
皮代谷发布了新的文献求助10
18秒前
传奇3应助积极的老鼠采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771589
求助须知:如何正确求助?哪些是违规求助? 5592681
关于积分的说明 15427933
捐赠科研通 4904901
什么是DOI,文献DOI怎么找? 2639075
邀请新用户注册赠送积分活动 1586878
关于科研通互助平台的介绍 1541879