Remaining life prediction of rolling bearings with secondary feature selection and BSBiLSTM

超参数 方位(导航) 特征选择 计算机科学 约束(计算机辅助设计) 滚动轴承 人工智能 选择(遗传算法) 时域 特征(语言学) 振动 模式识别(心理学) 机器学习 工程类 哲学 物理 机械工程 量子力学 语言学 计算机视觉
作者
Feng Song,Zhihai Wang,Xiaoqin Liu,Guoai Ren,Tao Liu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (7): 076127-076127 被引量:3
标识
DOI:10.1088/1361-6501/ad3ea6
摘要

Abstract Rolling element bearings are critical components in rotating machinery. To tackle the problem of difficult to accurately characterize the operating state of rolling bearings caused by irrelevance and varying sensitivity of multiple features to performance degradation, and introduction of subjective errors in determination of hyperparameters of deep learning models, which can affect the accuracy and efficiency of remaining useful life (RUL) prediction. To address these challenges, this paper proposed a novel RUL prediction method for rolling bearings with secondary feature selection and Bayesian optimization of self-attention mechanisms for bidirectional long short-term memory (BSBiLSTM). Firstly, multi-domain features are extracted from noise-reduced vibration signals. Then, a three-criterion constraint-based feature selection algorithm is used and a secondary selection algorithm with Pearson correlation coefficient is proposed to improve data quality. Next, the 3 σ criterion is integrated to determine the first prediction time for rolling bearings and to divide the degradation stage. Subsequently, the BiLSTM model with Bayesian optimization and self-attention mechanism is proposed to predict the RUL of rolling bearings to further improve the algorithm efficiency. Finally, experimental validation is carried out based on the PRONOSTIA platform dataset and the XJTU-SY rolling bearing dataset, and the results show that the method proposed in this paper is better than many mainstream life prediction methods for rolling bearings at present, and the prediction accuracy is higher.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拾云完成签到,获得积分10
刚刚
呱呱完成签到,获得积分10
1秒前
1秒前
情怀应助Rainbow采纳,获得10
1秒前
tang发布了新的文献求助10
1秒前
赵赵完成签到,获得积分10
2秒前
斯文败类应助rrrrroxie采纳,获得10
2秒前
3秒前
司空绝山完成签到,获得积分10
3秒前
雪白的威完成签到,获得积分10
3秒前
搜集达人应助大可采纳,获得10
3秒前
在水一方应助典雅的俊驰采纳,获得10
4秒前
4秒前
4秒前
5秒前
Enns完成签到 ,获得积分10
5秒前
liao完成签到 ,获得积分10
5秒前
ddb发布了新的文献求助10
7秒前
炸茄盒的老头完成签到,获得积分10
7秒前
深情安青应助shengdong采纳,获得10
8秒前
9秒前
lls发布了新的文献求助10
9秒前
马彦杰发布了新的文献求助10
9秒前
宇少爱学习哟完成签到,获得积分10
9秒前
啸傲完成签到,获得积分10
9秒前
雾失楼台完成签到,获得积分10
9秒前
小二郎应助Jiang采纳,获得10
10秒前
阿德利企鹅完成签到 ,获得积分10
10秒前
10秒前
10秒前
12秒前
CodeCraft应助超饿的肥羊采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
wenbo完成签到,获得积分10
13秒前
zhang完成签到,获得积分10
13秒前
13秒前
欣于所遇完成签到,获得积分10
13秒前
呆鹅喵喵发布了新的文献求助10
13秒前
Sally完成签到,获得积分10
14秒前
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009366
求助须知:如何正确求助?哪些是违规求助? 3549232
关于积分的说明 11301348
捐赠科研通 3283689
什么是DOI,文献DOI怎么找? 1810387
邀请新用户注册赠送积分活动 886217
科研通“疑难数据库(出版商)”最低求助积分说明 811301