Remaining life prediction of rolling bearings with secondary feature selection and BSBiLSTM

超参数 方位(导航) 特征选择 计算机科学 约束(计算机辅助设计) 滚动轴承 人工智能 选择(遗传算法) 时域 特征(语言学) 振动 模式识别(心理学) 机器学习 工程类 语言学 哲学 机械工程 物理 量子力学 计算机视觉
作者
Feng Song,Zhihai Wang,Xiaoqin Liu,Guoai Ren,Tao Liu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (7): 076127-076127 被引量:1
标识
DOI:10.1088/1361-6501/ad3ea6
摘要

Abstract Rolling element bearings are critical components in rotating machinery. To tackle the problem of difficult to accurately characterize the operating state of rolling bearings caused by irrelevance and varying sensitivity of multiple features to performance degradation, and introduction of subjective errors in determination of hyperparameters of deep learning models, which can affect the accuracy and efficiency of remaining useful life (RUL) prediction. To address these challenges, this paper proposed a novel RUL prediction method for rolling bearings with secondary feature selection and Bayesian optimization of self-attention mechanisms for bidirectional long short-term memory (BSBiLSTM). Firstly, multi-domain features are extracted from noise-reduced vibration signals. Then, a three-criterion constraint-based feature selection algorithm is used and a secondary selection algorithm with Pearson correlation coefficient is proposed to improve data quality. Next, the 3 σ criterion is integrated to determine the first prediction time for rolling bearings and to divide the degradation stage. Subsequently, the BiLSTM model with Bayesian optimization and self-attention mechanism is proposed to predict the RUL of rolling bearings to further improve the algorithm efficiency. Finally, experimental validation is carried out based on the PRONOSTIA platform dataset and the XJTU-SY rolling bearing dataset, and the results show that the method proposed in this paper is better than many mainstream life prediction methods for rolling bearings at present, and the prediction accuracy is higher.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助烦烦采纳,获得10
1秒前
寒冷的奇异果完成签到,获得积分10
2秒前
2秒前
枫叶的虫子完成签到,获得积分10
2秒前
4秒前
6秒前
9秒前
马佳凯完成签到,获得积分10
10秒前
10秒前
vousme完成签到 ,获得积分10
13秒前
123发布了新的文献求助30
14秒前
Hello应助canvas采纳,获得10
14秒前
Owen应助萨卡莱斯采纳,获得10
15秒前
16秒前
16秒前
Tuotuo完成签到 ,获得积分10
17秒前
19秒前
hunter完成签到 ,获得积分10
20秒前
胖虎完成签到,获得积分10
21秒前
23秒前
23秒前
彭于晏应助123采纳,获得30
24秒前
彩色半烟发布了新的文献求助10
25秒前
归零儿驳回了iNk应助
25秒前
Jnest发布了新的文献求助10
27秒前
777发布了新的文献求助10
27秒前
香蕉觅云应助淡定的如风采纳,获得10
28秒前
玛卡巴卡卡完成签到 ,获得积分10
30秒前
32秒前
完美世界应助777采纳,获得10
32秒前
Orange应助Jnest采纳,获得10
33秒前
33秒前
脑洞疼应助彩色半烟采纳,获得10
35秒前
37秒前
38秒前
38秒前
黎乐乐完成签到 ,获得积分10
38秒前
40秒前
萨卡莱斯发布了新的文献求助10
41秒前
monere应助电磁波采纳,获得20
41秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267613
求助须知:如何正确求助?哪些是违规求助? 2907076
关于积分的说明 8340494
捐赠科研通 2577712
什么是DOI,文献DOI怎么找? 1401218
科研通“疑难数据库(出版商)”最低求助积分说明 655005
邀请新用户注册赠送积分活动 633967