Chirality-Induced Crystallization and Defect Passivation of Perovskites: Toward High-Performance Solar Cells

材料科学 位阻效应 钝化 结晶 钙钛矿(结构) 开路电压 分子 兴奋剂 结晶学 纳米技术 光电子学 立体化学 化学 有机化学 电压 图层(电子) 物理 量子力学
作者
Wenting Wu,Qiaoyun Chen,Ji Cao,Jianfei Fu,Zelong Zhang,Lei Chen,Rui Dong,Jing Zhang,Yi Zhou,Bo Song
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (13): 16340-16350 被引量:4
标识
DOI:10.1021/acsami.4c01246
摘要

As an additive for perovskites, in addition to functional groups, the steric configuration of molecules is worthy of consideration because it influences perovskite crystallization, thus determining whether defect passivation is effective without any side effects. In this work, the chiral molecules l- and d-pyroglutamic acid (l-PA and d-PA) were chosen as additives for perovskite passivators to reveal the reasons for the differences in passivation between amino acids with different steric configurations. Functional groups, such as the C═O groups and N–H groups of l-PA and d-PA, can passivate the perovskite defects. However, l-PA exhibited a more distorted steric configuration, while d-PA was more planar, leading to differences in the distances between the two C═O groups. Taking the Pb–Pb bond length as a reference, the shorter distance between the two C═O groups of l-PA distorts the perovskite lattice structure, which results in poor device stability. Conversely, the similar distance between the two C═O groups of d-PA promoted the preferred orientational growth of the perovskite. Finally, the d-PA-doped device accomplished an excellent efficiency of 24.11% with an improved open-circuit voltage of 1.17 V. Furthermore, the efficiency of the unencapsulated d-PA-doped device was maintained at 93% in N2 for more than 3000 h and 74% after 500 h of operation at maximum power point tracking under continuous illumination.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lawenced完成签到,获得积分10
1秒前
1秒前
321完成签到,获得积分10
2秒前
2秒前
tong发布了新的文献求助30
2秒前
3秒前
Ruadong完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
Stone发布了新的文献求助10
4秒前
852应助33采纳,获得10
4秒前
Nobody完成签到,获得积分10
5秒前
DreamSeker8发布了新的文献求助10
6秒前
6秒前
6秒前
Owen_Hu_11完成签到,获得积分10
7秒前
小兵大大怪完成签到,获得积分10
7秒前
苦苦发布了新的文献求助10
7秒前
MANI完成签到,获得积分20
7秒前
Ruadong发布了新的文献求助10
8秒前
8秒前
爆米花应助盛夏采纳,获得10
8秒前
mmmmm发布了新的文献求助10
9秒前
Jerrie完成签到,获得积分10
9秒前
echo1993完成签到 ,获得积分10
9秒前
xue发布了新的文献求助10
9秒前
勤恳的曼凡完成签到 ,获得积分10
9秒前
9秒前
Hello应助Auoror采纳,获得10
9秒前
爱学习完成签到 ,获得积分10
9秒前
9秒前
妃子完成签到,获得积分10
10秒前
Celine完成签到,获得积分10
10秒前
烟花应助神光采纳,获得10
10秒前
kbj完成签到,获得积分10
11秒前
11秒前
科研通AI2S应助洁净思枫采纳,获得10
11秒前
惆怅完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608436
求助须知:如何正确求助?哪些是违规求助? 4693073
关于积分的说明 14876620
捐赠科研通 4717595
什么是DOI,文献DOI怎么找? 2544222
邀请新用户注册赠送积分活动 1509305
关于科研通互助平台的介绍 1472836