钙钛矿(结构)
铅(地质)
卤化物
衍射
X射线
材料科学
结晶学
光学
化学
物理
地质学
无机化学
地貌学
作者
Ekaterina I. Marchenko,Vadim Korolev,Elena A. Kobeleva,Nikolai A. Belich,Natalia N. Udalova,N. N. Eremin,Eugene A. Goodilin,Alexey B. Tarasov
出处
期刊:Cornell University - arXiv
日期:2024-04-26
标识
DOI:10.48550/arxiv.2404.17294
摘要
Identification of crystal structures is a crucial stage in the exploration of novel functional materials. This procedure is usually time-consuming and can be false-positive or false-negative. This necessitates a significant level of expert proficiency in the field of crystallography and, especially, requires deep experience in perovskite - related structures of hybrid perovskites. Our work is devoted to the machine learning classification of structure types of hybrid lead halides based on available X-ray diffraction data. Here, we proposed a simple approach to quickly identify of dimensionality of inorganic substructures, types of lead halide polyhedra connectivity and structure types using common powder XRD data and ML - decision tree classification model. The average accuracy of our ML algorithm in predicting the dimensionality of inorganic substructure, type of connection of lead halide and inorganic substructure topology by theoretically calculated XRD pattern among 14 most common structure types reaches 0.86+-0.05, 0.827+-0.028 and 0.71+-0.05, respectively. The validation of our decision tree classification ML model on experimental XRD data shows the accuracies of 1.0 and 0.82 for the dimension and structure type prediction. Thus, our approach can significantly simplify and accelerate the interpretation of highly complicated XRD data for hybrid lead halides.
科研通智能强力驱动
Strongly Powered by AbleSci AI