铜
表面改性
化学
材料科学
化学工程
无机化学
纳米技术
有机化学
物理化学
工程类
作者
Javad B. M. Parambath,K. Vijai Anand,Hussain Alawadhi,Ahmed A. Mohamed
出处
期刊:Langmuir
[American Chemical Society]
日期:2024-04-26
卷期号:40 (18): 9797-9808
被引量:1
标识
DOI:10.1021/acs.langmuir.4c00977
摘要
In this study, we report the modification of flexible copper films via the spontaneous reduction of aryldiazonium gold salts [X-4-C6H4N≡N]AuCl4 (X═COOH, NO2). The electroless modification involves dipping of flexible copper films in the aryldiazonium gold solutions for a few seconds, under ambient conditions, followed by a washing step with deionized water to obtain a mechanically robust gold-aryl coating. The chemical composition, morphology, electronic structure, and optical properties of the gold-aryl layer and the flexibility of the modified copper films are supported by the results from X-ray photoelectron spectroscopy (XPS), electrochemistry, contact angle, scanning electron microscopy (SEM), and ultraviolet photoelectron spectroscopy (UPS). XPS surface analysis showed metallic gold in addition to C–C, C–O/C–N, and C═O functional groups from the grafted aryls. Cu 2p showed metallic copper as a major component and a small amount of Cu(II) ions. Wettability studies showed that Au-COOH@Cu increased the contact angle of the bare copper films from 68.0 ± 0.7° to 82.0° ± 0.7°, while Au-NO2@Cu increased the contact angle to 134.0° ± 0.3°. UPS energy profile analysis of [HOOC-4-C6H4N≡N]AuCl4 (valence band maximum = 1.91 eV) exhibited greater reducibility than [O2N-4-C6H4N≡N]AuCl4 (valence band maximum = 2.91 eV). The lower ionization potential of [HOOC-4-C6H4N≡N]AuCl4 (IP = 4.33 eV) enhanced the reactivity upon copper film contact, potentially inducing efficient energy level alignment, compared with [O2N-4-C6H4N≡N]AuCl4 (IP = 5.62 eV). UPS results were further supported by electrochemistry investigation which revealed that [HOOC-4-C6H4N≡N]AuCl4 is easily reducible compared with [O2N-4-C6H4N≡N]AuCl4. The findings presented here hold significant implications for developing flexible copper films and pave the way for future advancements in electronic material modification for industrial applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI