Estimation of wheat biophysical variables through UAV hyperspectral remote sensing using machine learning and radiative transfer models

高光谱成像 辐射传输 遥感 环境科学 大气辐射传输码 估计 计算机科学 工程类 地理 物理 系统工程 量子力学
作者
R. N. Sahoo,R. G. Rejith,Shalini Gakhar,Jochem Verrelst,Rajeev Ranjan,Tarun Teja Kondraju,Mahesh Chand Meena,Joydeep Mukherjee,Anchal Dass,Sudhir Kumar,Mahesh Kumar,R. Dhandapani,Viswanathan Chinnusamy
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:221: 108942-108942 被引量:2
标识
DOI:10.1016/j.compag.2024.108942
摘要

Accurate and timely estimation of crop biophysical variables is necessary for monitoring crop growth and implementing effective nutrient management practices. Incorporating machine learning multivariate models with UAV-based hyperspectral imaging provides a fast non-destructive and near real-time prediction of these variables. In the present study, the hyperspectral data in the spectral range of 400–1000 nm from an imaging spectrometer integrated into an unmanned aerial vehicle (UAV) was used for mapping experimental fields of wheat crop in ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi. The imaging spectroradiometer has a spectral resolution of 2.2 nm with 269 distinct bands and imaging with an ultrahigh spatial resolution of 4 cm was employed for the experiment. Five competitive machine learning algorithms, i.e., artificial neural network (ANN), extreme learning machine (ELM), multivariate adaptive regression spline (MARS), random forest (RF), and support vector machine (SVM) were evaluated for predicting biophysical variables of the wheat crop, namely leaf area index (LAI), leaf chlorophyll content (LCC), and canopy chlorophyll content (CCC). The physical radiative transfer model (RTM) PROSAIL was also applied in combination with a machine learning regression algorithms toolbox as available in the automated radiative transfer model's operator (ARTMO) software, leading to hybrid models. In the empirical analysis, ELM outperformed the other algorithms with maximum validation R2 of 0.948, 0.990, and 0.963 for LAI, LCC, and CCC, respectively. However, in the case of hybrid modelling, on validated against simulated data ANN outperforms the other models with maximum validation R2 of 0.983, 0.969, and 0.998 for LAI, LCC, and CCC, respectively. Validated against real data, the NRMSE values obtained for LAI, LCC, and CCC retrieved maps are 24.51 %, 38.74 %, and 36.16 %, respectively. The accurate retrieval of LAI and CCC with the highest prediction accuracy was obtained using a hybrid approach, while empirical multivariate regression applied to image spectra showed the best performance for LCC mapping. The study provides feasible solutions to infer the state of croplands in support of better farm management practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晓湫发布了新的文献求助10
1秒前
上官若男应助朴次次采纳,获得20
2秒前
THF发布了新的文献求助10
6秒前
9秒前
Hello应助缥缈翠霜采纳,获得10
11秒前
蝌蚪完成签到,获得积分10
13秒前
13秒前
15秒前
19秒前
烟花应助科研通管家采纳,获得30
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
科目三应助科研通管家采纳,获得10
19秒前
19秒前
爆米花应助科研通管家采纳,获得10
19秒前
琉璃发布了新的文献求助10
20秒前
Pegasus完成签到,获得积分10
22秒前
XianyunWang完成签到,获得积分10
24秒前
爆米花应助Lisen采纳,获得10
24秒前
李还乱完成签到,获得积分10
25秒前
25秒前
db1完成签到,获得积分10
28秒前
迷路的寒云完成签到,获得积分10
30秒前
虚幻白桃应助北彧采纳,获得20
30秒前
烟花应助英勇的芒果采纳,获得10
31秒前
33秒前
星辰大海应助db1采纳,获得10
35秒前
36秒前
大肥猫发布了新的文献求助10
38秒前
38秒前
洁净亦巧发布了新的文献求助30
41秒前
传奇3应助傻自强呀采纳,获得10
43秒前
大肥猫完成签到,获得积分20
45秒前
一颗星发布了新的文献求助10
46秒前
黄迪发布了新的文献求助10
48秒前
48秒前
51秒前
嗦嗦发布了新的文献求助20
51秒前
weiyongswust完成签到 ,获得积分10
52秒前
53秒前
活泼舞蹈完成签到 ,获得积分10
53秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352209
求助须知:如何正确求助?哪些是违规求助? 2977519
关于积分的说明 8679749
捐赠科研通 2658470
什么是DOI,文献DOI怎么找? 1455802
科研通“疑难数据库(出版商)”最低求助积分说明 674095
邀请新用户注册赠送积分活动 664654