Decoding Emotions: Intelligent visual perception for movie image classification using sustainable AI in entertainment computing

计算机科学 游戏娱乐 感知 解码方法 多媒体 人工智能 计算机视觉 心理学 电信 视觉艺术 艺术 神经科学
作者
Peng Huang
出处
期刊:Entertainment Computing [Elsevier]
卷期号:: 100696-100696
标识
DOI:10.1016/j.entcom.2024.100696
摘要

Affective computing researchers have been studying emotion recognition (ER) based on real-world facial photos and videos for a while now, and it's a very popular area. With the sounds produced by head posture, facial deformation, and lighting fluctuation, ER is still difficult to execute in the wild. This research employs a machine learning model for sustainable artificial intelligence (AI) in entertainment computing to perform emotion decoding for movie picture categorization. Emotion labels are produced for every video sample by the suggested model, which takes video data as input. First, we employ a face identification and selection process based on the video data to identify the most consequential face areas. Here, facial expressions from films have been gathered as input pictures, which have then been processed for noise reduction and normalisation. Then, in order to analyse the facial expressions in this image, it was segmented using the fuzzy K-means equalisation clustering model. Convolutional adversarial U-net graph neural networks have been used to classify the studied pictures for emotion decoding. Several movie-based emotion datasets are subjected to experimental analysis in order to determine accuracy, precision, recall, F-1 score, RMSE, and AUC. With excellent classification accuracy, the suggested deep learning paradigm shows promise in identifying the emotional shifts in gamers. The suggested method achieved 97% accuracy, 96% precision, 92% recall, 85% F-1 score, 79% RMSE, and 86% AUC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tcmlida发布了新的文献求助30
2秒前
只A不B应助胡说八道采纳,获得30
5秒前
baibai完成签到 ,获得积分10
5秒前
秋名山发布了新的文献求助30
5秒前
安静笑晴发布了新的文献求助10
5秒前
缥缈的语雪完成签到 ,获得积分10
5秒前
6秒前
7秒前
眼睛大的蜜蜂完成签到,获得积分10
7秒前
8秒前
8秒前
晴空万里发布了新的文献求助10
8秒前
机智的乌完成签到,获得积分10
9秒前
9秒前
kyunlee发布了新的文献求助10
10秒前
pp‘s完成签到 ,获得积分10
12秒前
陈__发布了新的文献求助30
13秒前
13秒前
睡到自然醒完成签到,获得积分10
13秒前
和和发布了新的文献求助20
14秒前
许若南发布了新的文献求助10
15秒前
15秒前
shidewu完成签到,获得积分10
16秒前
TUTUKing完成签到,获得积分10
16秒前
11完成签到,获得积分10
17秒前
梦尔斯泰完成签到,获得积分10
19秒前
老仙发布了新的文献求助10
19秒前
Orange应助陈晓迪1992采纳,获得30
19秒前
JamesPei应助陈__采纳,获得10
19秒前
21秒前
21秒前
霸气秀完成签到,获得积分10
22秒前
22秒前
秋名山完成签到,获得积分10
25秒前
机智的思山完成签到 ,获得积分10
25秒前
无私的问芙完成签到,获得积分10
26秒前
27秒前
许若南完成签到,获得积分10
28秒前
1321发布了新的文献求助10
28秒前
okayyup完成签到,获得积分10
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3441528
求助须知:如何正确求助?哪些是违规求助? 3038152
关于积分的说明 8970749
捐赠科研通 2726439
什么是DOI,文献DOI怎么找? 1495472
科研通“疑难数据库(出版商)”最低求助积分说明 691208
邀请新用户注册赠送积分活动 688232