Decoding Emotions: Intelligent visual perception for movie image classification using sustainable AI in entertainment computing

计算机科学 游戏娱乐 感知 解码方法 多媒体 人工智能 计算机视觉 心理学 电信 视觉艺术 艺术 神经科学
作者
Peng Huang
出处
期刊:Entertainment Computing [Elsevier]
卷期号:: 100696-100696
标识
DOI:10.1016/j.entcom.2024.100696
摘要

Affective computing researchers have been studying emotion recognition (ER) based on real-world facial photos and videos for a while now, and it's a very popular area. With the sounds produced by head posture, facial deformation, and lighting fluctuation, ER is still difficult to execute in the wild. This research employs a machine learning model for sustainable artificial intelligence (AI) in entertainment computing to perform emotion decoding for movie picture categorization. Emotion labels are produced for every video sample by the suggested model, which takes video data as input. First, we employ a face identification and selection process based on the video data to identify the most consequential face areas. Here, facial expressions from films have been gathered as input pictures, which have then been processed for noise reduction and normalisation. Then, in order to analyse the facial expressions in this image, it was segmented using the fuzzy K-means equalisation clustering model. Convolutional adversarial U-net graph neural networks have been used to classify the studied pictures for emotion decoding. Several movie-based emotion datasets are subjected to experimental analysis in order to determine accuracy, precision, recall, F-1 score, RMSE, and AUC. With excellent classification accuracy, the suggested deep learning paradigm shows promise in identifying the emotional shifts in gamers. The suggested method achieved 97% accuracy, 96% precision, 92% recall, 85% F-1 score, 79% RMSE, and 86% AUC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hml123发布了新的文献求助10
1秒前
帝国之花发布了新的文献求助30
1秒前
浅行完成签到,获得积分10
1秒前
日出完成签到,获得积分10
1秒前
烤肠应助约定看星星啊采纳,获得20
2秒前
2秒前
jos完成签到,获得积分10
2秒前
3秒前
huchen发布了新的文献求助10
3秒前
3秒前
漂亮的雁露完成签到,获得积分10
3秒前
zmj关注了科研通微信公众号
3秒前
科研通AI6应助chem采纳,获得10
3秒前
Orange应助Zero采纳,获得10
3秒前
小青椒应助5r采纳,获得50
3秒前
4秒前
4秒前
4秒前
FashionBoy应助甜甜的采纳,获得10
5秒前
5秒前
谔谔完成签到,获得积分10
5秒前
LD20000620完成签到,获得积分10
6秒前
6秒前
绮烟完成签到 ,获得积分10
6秒前
秦磊发布了新的文献求助10
6秒前
reighnfjzkv发布了新的文献求助10
7秒前
夕阳space发布了新的文献求助10
7秒前
huchen完成签到,获得积分20
7秒前
7秒前
西瓜刀发布了新的文献求助10
7秒前
8秒前
Criminology34应助耶啵采纳,获得10
9秒前
科研通AI6应助我爱科研采纳,获得10
9秒前
菜园街发布了新的文献求助10
9秒前
yysghr发布了新的文献求助10
9秒前
ML完成签到 ,获得积分10
9秒前
nightmare发布了新的文献求助10
9秒前
10秒前
sssyyy完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531940
求助须知:如何正确求助?哪些是违规求助? 4620674
关于积分的说明 14574347
捐赠科研通 4560401
什么是DOI,文献DOI怎么找? 2498857
邀请新用户注册赠送积分活动 1478757
关于科研通互助平台的介绍 1450090