亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Decoding Emotions: Intelligent visual perception for movie image classification using sustainable AI in entertainment computing

计算机科学 游戏娱乐 感知 解码方法 多媒体 人工智能 计算机视觉 心理学 电信 视觉艺术 艺术 神经科学
作者
Peng Huang
出处
期刊:Entertainment Computing [Elsevier]
卷期号:: 100696-100696
标识
DOI:10.1016/j.entcom.2024.100696
摘要

Affective computing researchers have been studying emotion recognition (ER) based on real-world facial photos and videos for a while now, and it's a very popular area. With the sounds produced by head posture, facial deformation, and lighting fluctuation, ER is still difficult to execute in the wild. This research employs a machine learning model for sustainable artificial intelligence (AI) in entertainment computing to perform emotion decoding for movie picture categorization. Emotion labels are produced for every video sample by the suggested model, which takes video data as input. First, we employ a face identification and selection process based on the video data to identify the most consequential face areas. Here, facial expressions from films have been gathered as input pictures, which have then been processed for noise reduction and normalisation. Then, in order to analyse the facial expressions in this image, it was segmented using the fuzzy K-means equalisation clustering model. Convolutional adversarial U-net graph neural networks have been used to classify the studied pictures for emotion decoding. Several movie-based emotion datasets are subjected to experimental analysis in order to determine accuracy, precision, recall, F-1 score, RMSE, and AUC. With excellent classification accuracy, the suggested deep learning paradigm shows promise in identifying the emotional shifts in gamers. The suggested method achieved 97% accuracy, 96% precision, 92% recall, 85% F-1 score, 79% RMSE, and 86% AUC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明芬发布了新的文献求助10
24秒前
ceeray23应助科研通管家采纳,获得10
34秒前
酷酷的紫南完成签到 ,获得积分10
43秒前
48秒前
CapQing完成签到,获得积分10
49秒前
2分钟前
明芬发布了新的文献求助10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
小不点发布了新的文献求助30
2分钟前
3分钟前
小不点完成签到,获得积分20
3分钟前
木木完成签到 ,获得积分10
3分钟前
3分钟前
DduYy完成签到,获得积分10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
冉亦完成签到,获得积分10
4分钟前
5分钟前
犬来八荒发布了新的文献求助20
5分钟前
HYQ完成签到 ,获得积分10
5分钟前
TYM发布了新的文献求助10
5分钟前
科研通AI6应助TYM采纳,获得30
5分钟前
gengen应助犬来八荒采纳,获得10
5分钟前
5分钟前
5分钟前
犬来八荒完成签到,获得积分10
5分钟前
yyy发布了新的文献求助10
5分钟前
5分钟前
小二郎应助yyy采纳,获得10
6分钟前
Only完成签到 ,获得积分10
6分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
betterme完成签到,获得积分10
6分钟前
6分钟前
CRUSADER完成签到,获得积分10
7分钟前
小不点应助明芬采纳,获得10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599818
求助须知:如何正确求助?哪些是违规求助? 4685540
关于积分的说明 14838598
捐赠科研通 4671430
什么是DOI,文献DOI怎么找? 2538288
邀请新用户注册赠送积分活动 1505554
关于科研通互助平台的介绍 1470945