Decoding Emotions: Intelligent visual perception for movie image classification using sustainable AI in entertainment computing

计算机科学 游戏娱乐 感知 解码方法 多媒体 人工智能 计算机视觉 心理学 电信 视觉艺术 艺术 神经科学
作者
Peng Huang
出处
期刊:Entertainment Computing [Elsevier BV]
卷期号:: 100696-100696
标识
DOI:10.1016/j.entcom.2024.100696
摘要

Affective computing researchers have been studying emotion recognition (ER) based on real-world facial photos and videos for a while now, and it's a very popular area. With the sounds produced by head posture, facial deformation, and lighting fluctuation, ER is still difficult to execute in the wild. This research employs a machine learning model for sustainable artificial intelligence (AI) in entertainment computing to perform emotion decoding for movie picture categorization. Emotion labels are produced for every video sample by the suggested model, which takes video data as input. First, we employ a face identification and selection process based on the video data to identify the most consequential face areas. Here, facial expressions from films have been gathered as input pictures, which have then been processed for noise reduction and normalisation. Then, in order to analyse the facial expressions in this image, it was segmented using the fuzzy K-means equalisation clustering model. Convolutional adversarial U-net graph neural networks have been used to classify the studied pictures for emotion decoding. Several movie-based emotion datasets are subjected to experimental analysis in order to determine accuracy, precision, recall, F-1 score, RMSE, and AUC. With excellent classification accuracy, the suggested deep learning paradigm shows promise in identifying the emotional shifts in gamers. The suggested method achieved 97% accuracy, 96% precision, 92% recall, 85% F-1 score, 79% RMSE, and 86% AUC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
脑洞疼应助小当家采纳,获得10
2秒前
稳重龙猫发布了新的文献求助10
2秒前
4秒前
吃花生酱的猫完成签到,获得积分10
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
雨齐完成签到,获得积分10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得30
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
YH应助科研通管家采纳,获得100
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
8秒前
思源应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
9秒前
9秒前
情怀应助皮水儿采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
eric888应助科研通管家采纳,获得100
9秒前
佳语妍说发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
Ava应助zxcvbnm采纳,获得10
9秒前
hiroto完成签到,获得积分10
10秒前
10秒前
丿丶恒应助斑马还没睡采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
一米阳光完成签到,获得积分10
11秒前
小白发布了新的文献求助10
13秒前
13秒前
张 大头完成签到,获得积分0
16秒前
17秒前
XianyunWang发布了新的文献求助10
19秒前
21秒前
勤奋尔冬完成签到 ,获得积分10
23秒前
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959705
求助须知:如何正确求助?哪些是违规求助? 3505951
关于积分的说明 11127133
捐赠科研通 3237931
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871709
科研通“疑难数据库(出版商)”最低求助积分说明 802976