Longitudinal Assessment of Tumor-Infiltrating Lymphocytes in Primary Breast Cancer Following Neoadjuvant Radiation Therapy

放射治疗 医学 肿瘤科 乳腺癌 新辅助治疗 肿瘤浸润淋巴细胞 内科学 癌症 免疫疗法
作者
Miki Yoneyama,Konstantinos Zormpas‐Petridis,Ruth Robinson,Faranak Sobhani,Elena Provenzano,Harriet Steel,Sara Lightowlers,Catherine Towns,Simón P. Castillo,Selvakumar Anbalagan,Tom Lund,Erik Wennerberg,Alan Melcher,Charlotte E. Coles,Ioannis Roxanis,Yinyin Yuan,Navita Somaiah
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:120 (3): 862-874 被引量:1
标识
DOI:10.1016/j.ijrobp.2024.04.065
摘要

Tumor-infiltrating lymphocytes (TILs) have prognostic significance in several cancers, including breast. Despite interest in combining radiotherapy with immunotherapy, little is known about the effect of radiotherapy itself on the tumor-immune microenvironment, including TILs. Here, we interrogated longitudinal dynamics of tumor-infiltrating and systemic lymphocytes in patient samples taken before, during, and after neoadjuvant radiotherapy (NART), from XXX and XXX breast clinical trials.We manually scored stromal TILs (sTILs) from longitudinal tumor samples using standardized guidelines, as well as deep learning-based scores at cell-level (cTIL) and cell- and tissue-level combination analysis (SuperTIL). In parallel, we interrogated absolute lymphocyte counts from routine blood tests at corresponding timepoints during treatment. Exploratory analyses studied the relationship between TILs and pathological complete response (pCR) and long-term outcomes.Patients receiving NART experienced a significant and uniform decrease in sTILs that did not recover at the time of surgery (P < 0.0001). This lymphodepletive effect was also mirrored in peripheral blood. Our "SuperTIL" deep learning score showed good concordance with manual sTILs, and importantly performed comparably to manual scores in predicting pCR from diagnostic biopsies. Analysis suggested an association between baseline sTILs and pCR, as well as sTILs at surgery and relapse, in patients receiving NART.This study provides novel insights into TIL dynamics in the context of NART in breast cancer, and demonstrates the potential for artificial intelligence to assist routine pathology. We have identified trends which warrant further interrogation and have a bearing on future radio-immunotherapy trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助BaekHyun采纳,获得10
刚刚
1秒前
1秒前
nanhe698完成签到,获得积分10
2秒前
2秒前
李本来完成签到,获得积分20
3秒前
看看发布了新的文献求助10
3秒前
ZZY完成签到,获得积分10
3秒前
DQY完成签到,获得积分10
4秒前
BONBON完成签到,获得积分20
4秒前
动听导师发布了新的文献求助10
5秒前
5秒前
季忆完成签到,获得积分10
5秒前
小周发布了新的文献求助10
6秒前
smile发布了新的文献求助10
6秒前
7秒前
Lore完成签到 ,获得积分10
7秒前
7秒前
jiang完成签到,获得积分10
8秒前
8秒前
无奈的酒窝关注了科研通微信公众号
9秒前
毛毛完成签到,获得积分10
9秒前
正在完成签到,获得积分10
10秒前
10秒前
充电宝应助JR采纳,获得10
11秒前
11秒前
cc完成签到,获得积分20
11秒前
李爱国应助111采纳,获得10
11秒前
jy发布了新的文献求助10
11秒前
好好完成签到 ,获得积分10
12秒前
阿希塔完成签到,获得积分10
12秒前
JamesPei应助看看采纳,获得10
12秒前
14秒前
14秒前
卢健辉发布了新的文献求助10
14秒前
15秒前
cookie完成签到,获得积分10
15秒前
JMZ完成签到 ,获得积分10
17秒前
英姑应助星星采纳,获得10
17秒前
spurs17发布了新的文献求助30
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808