电解质
氧化还原
水溶液
电化学
溶解度
锂(药物)
氯化物
离子液体
氯
化学
储能
电池(电)
氯化锂
无机化学
化学工程
物理化学
物理
催化作用
有机化学
电极
医学
功率(物理)
量子力学
工程类
内分泌学
作者
Pei Li,Shuo Yang,Jiaxiong Zhu,Shengnan Wang,Yue Hou,Huilin Cui,Ze Chen,Rong Zhang,Zhuoxi Wu,Yiqiao Wang,Zhiquan Wei,Xinghui Liu,Shaoce Zhang,Xinliang Li,Chunyi Zhi
出处
期刊:Matter
[Elsevier]
日期:2024-04-16
卷期号:7 (5): 1867-1878
标识
DOI:10.1016/j.matt.2024.03.010
摘要
Chlorine-based electrochemical energy storage is a promising candidate for sustainable battery technology. The anionic redox reaction of Cl0/−1 is of interest due to its superior redox potential (1.36 V vs. standard hydrogen electrode [SHE]), capacity (756 mAh g−1), high power, and low cost. Although Cl chemistry has been used in aqueous batteries for a long time, its deployment in organic lithium batteries has been significantly impeded due to the insolubility of Cl− ions (<0.1 M). Scarce oxidizable Cl− blocks redox reactions and the inevitable lithium chloride (LiCl) film passivates electrodes on discharge. We report a eutectic effect to improve the Cl− solubility in organic electrolytes (2 M or higher) by mixing a series of N-/P-centered chloride salts with lithium bis(trifluoromethanesulfonyl)imide at specific ratios. Based on an optimized Cl− concentration, a Li-Cl2 cell using I as a chemical fixation can achieve a three-electron transfer with a specific capacity of 702 mAh g−1 and an energy density of 1,116 Wh kg−1.
科研通智能强力驱动
Strongly Powered by AbleSci AI