多项式分布
计算机科学
贝叶斯概率
估计
统计
数据挖掘
计量经济学
数据科学
机器学习
人工智能
数学
工程类
系统工程
作者
William J. Parish,Arnie Aldridge,Martijn van Hasselt
标识
DOI:10.1177/1536867x241233671
摘要
In this article, we describe a new command, bamm, that implements a Bayesian method for addressing misclassification in multinomial data; see Swartz et al. (2004, Canadian Journal of Statistics 32: 285–302). We also describe a postestimation command, bammdx, that was developed to provide additional estimation diagnostics. We describe the method and the new commands and then present results from both a simulation study demonstrating bamm’s performance under a known misclassification data-generating process and an empirical example from alcohol epidemiology modeling.
科研通智能强力驱动
Strongly Powered by AbleSci AI