Ultrasound-Based Deep Learning Radiomics Nomogram for the Assessment of Lymphovascular Invasion in Invasive Breast Cancer: A Multicenter Study

无线电技术 淋巴血管侵犯 列线图 医学 多中心研究 乳腺癌 放射科 超声波 肿瘤科 癌症 内科学 转移 随机对照试验
作者
Di Zhang,Wang Zhou,Wenwu Lu,Xiachuan Qin,Xian‐Ya Zhang,Junli Wang,Jun Wu,Yanhong Luo,Yayang Duan,Chaoxue Zhang
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (10): 3917-3928 被引量:2
标识
DOI:10.1016/j.acra.2024.04.010
摘要

Rationale and Objectives

The aim of this study was to develop a deep learning radiomics nomogram (DLRN) based on B-mode ultrasound (BMUS) and color doppler flow imaging (CDFI) images for preoperative assessment of lymphovascular invasion (LVI) status in invasive breast cancer (IBC).

Materials and Methods

In this multicenter, retrospective study, 832 pathologically confirmed IBC patients were recruited from eight hospitals. The samples were divided into training, internal test, and external test sets. Deep learning and handcrafted radiomics features reflecting tumor phenotypes on BMUS and CDFI images were extracted. The BMUS score and CDFI score were calculated after radiomics feature selection. Subsequently, a DLRN was developed based on the scores and independent clinic-ultrasonic risk variables. The performance of the DLRN was evaluated for calibration, discrimination, and clinical usefulness.

Results

The DLRN predicted the LVI with accuracy, achieving an area under the receiver operating characteristic curve of 0.93 (95% CI 0.90–0.95), 0.91 (95% CI 0.87–0.95), and 0.91 (95% CI 0.86–0.94) in the training, internal test, and external test sets, respectively, with good calibration. The DLRN demonstrated superior performance compared to the clinical model and single scores across all three sets (p < 0.05). Decision curve analysis and clinical impact curve confirmed the clinical utility of the model. Furthermore, significant enhancements in net reclassification improvement (NRI) and integrated discrimination improvement (IDI) indicated that the two scores could serve as highly valuable biomarkers for assessing LVI.

Conclusion

The DLRN exhibited strong predictive value for LVI in IBC, providing valuable information for individualized treatment decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yang发布了新的文献求助10
刚刚
LZHWSND发布了新的文献求助10
1秒前
迷路的豌豆完成签到,获得积分10
1秒前
勤恳发布了新的文献求助10
2秒前
丁老三完成签到 ,获得积分10
2秒前
Orange完成签到 ,获得积分10
2秒前
慕青应助完美的海秋采纳,获得10
3秒前
尊敬秋双完成签到,获得积分10
3秒前
4秒前
5秒前
Singularity应助诚c采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
MP应助科研通管家采纳,获得20
6秒前
英姑应助科研通管家采纳,获得10
6秒前
6秒前
李健应助科研通管家采纳,获得10
6秒前
6秒前
SciGPT应助科研通管家采纳,获得20
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
8秒前
10秒前
10秒前
饺子发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
汉堡包应助扎心采纳,获得10
13秒前
hongjie_w发布了新的文献求助10
13秒前
14秒前
14秒前
顺利的耶发布了新的文献求助10
17秒前
戴先森发布了新的文献求助10
17秒前
yang完成签到,获得积分10
17秒前
18秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244023
求助须知:如何正确求助?哪些是违规求助? 2887881
关于积分的说明 8250101
捐赠科研通 2556472
什么是DOI,文献DOI怎么找? 1384639
科研通“疑难数据库(出版商)”最低求助积分说明 649901
邀请新用户注册赠送积分活动 625972