Ultrasound-Based Deep Learning Radiomics Nomogram for the Assessment of Lymphovascular Invasion in Invasive Breast Cancer: A Multicenter Study

无线电技术 淋巴血管侵犯 列线图 医学 多中心研究 乳腺癌 放射科 超声波 肿瘤科 癌症 内科学 转移 随机对照试验
作者
Di Zhang,Wang Zhou,Wenwu Lu,Xiachuan Qin,Xian‐Ya Zhang,Junli Wang,Jun Wu,Yanhong Luo,Yayang Duan,Chaoxue Zhang
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (10): 3917-3928 被引量:3
标识
DOI:10.1016/j.acra.2024.04.010
摘要

Rationale and Objectives

The aim of this study was to develop a deep learning radiomics nomogram (DLRN) based on B-mode ultrasound (BMUS) and color doppler flow imaging (CDFI) images for preoperative assessment of lymphovascular invasion (LVI) status in invasive breast cancer (IBC).

Materials and Methods

In this multicenter, retrospective study, 832 pathologically confirmed IBC patients were recruited from eight hospitals. The samples were divided into training, internal test, and external test sets. Deep learning and handcrafted radiomics features reflecting tumor phenotypes on BMUS and CDFI images were extracted. The BMUS score and CDFI score were calculated after radiomics feature selection. Subsequently, a DLRN was developed based on the scores and independent clinic-ultrasonic risk variables. The performance of the DLRN was evaluated for calibration, discrimination, and clinical usefulness.

Results

The DLRN predicted the LVI with accuracy, achieving an area under the receiver operating characteristic curve of 0.93 (95% CI 0.90–0.95), 0.91 (95% CI 0.87–0.95), and 0.91 (95% CI 0.86–0.94) in the training, internal test, and external test sets, respectively, with good calibration. The DLRN demonstrated superior performance compared to the clinical model and single scores across all three sets (p < 0.05). Decision curve analysis and clinical impact curve confirmed the clinical utility of the model. Furthermore, significant enhancements in net reclassification improvement (NRI) and integrated discrimination improvement (IDI) indicated that the two scores could serve as highly valuable biomarkers for assessing LVI.

Conclusion

The DLRN exhibited strong predictive value for LVI in IBC, providing valuable information for individualized treatment decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超帅的岱周完成签到,获得积分10
1秒前
坚定尔蓝完成签到,获得积分10
1秒前
昏睡的小蚂蚁完成签到,获得积分10
1秒前
tong完成签到,获得积分10
1秒前
2秒前
zhuyy完成签到,获得积分10
2秒前
jiyuan完成签到,获得积分10
2秒前
难过山菡完成签到,获得积分10
3秒前
Yi发布了新的文献求助10
3秒前
罐罐儿完成签到,获得积分0
3秒前
heqiongqiong完成签到,获得积分10
3秒前
董竹君完成签到,获得积分10
4秒前
cheng发布了新的文献求助10
4秒前
4秒前
满意怜翠完成签到,获得积分10
4秒前
2123121321321完成签到,获得积分10
5秒前
5秒前
远航完成签到,获得积分10
5秒前
6秒前
beforethedawn完成签到,获得积分10
6秒前
小二郎应助zz采纳,获得10
6秒前
摆烂fish完成签到,获得积分10
7秒前
7秒前
传统的雨文完成签到,获得积分10
7秒前
7秒前
ccccchen完成签到,获得积分10
7秒前
Yang发布了新的文献求助20
7秒前
抚琴祛魅完成签到 ,获得积分10
8秒前
顾矜应助糖醋可乐采纳,获得10
8秒前
yyy完成签到,获得积分10
8秒前
循环发布了新的文献求助10
8秒前
李伟完成签到,获得积分10
9秒前
Cylair发布了新的文献求助20
9秒前
情怀应助suwan采纳,获得10
9秒前
卡卡罗特完成签到 ,获得积分10
9秒前
带头大哥完成签到,获得积分0
10秒前
活泼洙完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助100
10秒前
土豪的钻石发布了新的文献求助100
10秒前
sje完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4598108
求助须知:如何正确求助?哪些是违规求助? 4009392
关于积分的说明 12410910
捐赠科研通 3688745
什么是DOI,文献DOI怎么找? 2033396
邀请新用户注册赠送积分活动 1066690
科研通“疑难数据库(出版商)”最低求助积分说明 951763