亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Graph Entropy-Based Early Change Detection in Dynamical Bearing Degradation Process

计算机科学 熵(时间箭头) 降级(电信) 变更检测 人工智能 热力学 电信 物理
作者
Ke Li,Hongshuo Zhang,Guoliang Lu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (13): 23186-23195 被引量:5
标识
DOI:10.1109/jiot.2024.3391792
摘要

Efficient information extraction enhances condition monitoring and fault diagnosis for bearings. The graph model (GM) has been proven to be a practical approach to extracting signal information within the temporal dynamic of frequencies. This paper proposes an early fault detection method based on graph entropy (GE) for the dynamical bearing degradation process, considering the structure differences between graph dynamic changes. First, the complete graph model (CGM) is constructed by a short-time spectrum generated from the original signal. In the fault detection phase, the GE, highly correlated with the health condition, is extracted from the GM to check any change in the machine state. Subsequently, the adaptive threshold of short-term month-over-month is used to judge the final decision-making in an automated way. Finally, the validation experiment on the XJTU-SY dataset and FEMTO-ST dataset, as well as compared with the state-of-the-art demonstrates its excellent detection performance. The proposed method extracts an effective one-dimensional index, which affords an excellent detection ability on early fault occurring in noisy environments, indicating a good potential for identification in the practical dynamic operation of engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
16秒前
小伙子应助贝壳beck采纳,获得150
16秒前
冷静夜蕾完成签到,获得积分10
21秒前
33秒前
YifanWang应助科研通管家采纳,获得10
36秒前
YifanWang应助科研通管家采纳,获得10
36秒前
36秒前
47秒前
kuoping完成签到,获得积分0
48秒前
su完成签到 ,获得积分10
56秒前
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
魔幻友菱完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
SciGPT应助小小K采纳,获得10
2分钟前
吼吼哈嘿发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
小小K发布了新的文献求助10
2分钟前
2分钟前
2分钟前
William完成签到 ,获得积分10
2分钟前
直率的摩托完成签到,获得积分20
2分钟前
2分钟前
2分钟前
LeeHx完成签到,获得积分10
2分钟前
小马甲应助科研通管家采纳,获得10
2分钟前
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
小马甲应助科研通管家采纳,获得10
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723857
求助须知:如何正确求助?哪些是违规求助? 5281752
关于积分的说明 15299292
捐赠科研通 4872127
什么是DOI,文献DOI怎么找? 2616571
邀请新用户注册赠送积分活动 1566419
关于科研通互助平台的介绍 1523277