PrivFR: Privacy-Enhanced Federated Recommendation With Shared Hash Embedding

计算机科学 散列函数 互联网隐私 嵌入 哈希链 计算机安全 万维网 人工智能
作者
Honglei Zhang,Xin Zhou,Zhiqi Shen,Yidong Li
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:1
标识
DOI:10.1109/tnnls.2024.3387757
摘要

Federated recommender systems (FRSs), with their improved privacy-preserving advantages to jointly train recommendation models from numerous devices while keeping user data distributed, have been widely explored in modern recommender systems (RSs). However, conventional FRSs require transmitting the entire model between the server and clients, which brings a huge carbon footprint for cost-conscious cross-device learning tasks. While several efforts have been dedicated to improving the efficiency of FRSs, it's suboptimal to treat the whole model as the objective of compact design. Besides, current research fails to handle the out-of-vocabulary (OOV) issue in real-world FRSs, where the items only occasionally appear in the testing phase but were not observed during the training process, which is another practical challenge and has not been well studied yet. To this end, we propose a privacy-enhanced federated recommendation framework with shared hash embedding, PrivFR, in cross-device settings, which is an efficient representation mechanism specialized for the embedding parameters without compromising the model capability. Specifically, it represents items in a resource-efficient way by delicately utilizing shared hash embedding and multiple hash functions. As such, it just maintains a small shared pool of hash embedding in local clients, rather than fitting all embedding vectors for each item, which can exactly achieve the dual advantages of conserving resources and handling the OOV issue. What's more, we prove that this mechanism can protect the data privacy of local clients from a theoretical perspective. Extensive experiments show that our method not only effectively reduces storage and communication overheads, but also outperforms state-of-the-art FRSs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dll发布了新的文献求助10
1秒前
杨xy完成签到 ,获得积分10
4秒前
光亮向真完成签到,获得积分20
5秒前
赵西里完成签到,获得积分10
6秒前
7秒前
听星伴月完成签到,获得积分10
7秒前
疯狂的赛凤完成签到,获得积分10
7秒前
stokis03发布了新的文献求助10
7秒前
顾子墨完成签到,获得积分10
10秒前
模糊中正应助yumeng采纳,获得50
12秒前
丘比特应助TANGYU采纳,获得10
12秒前
ZHAZHA发布了新的文献求助10
14秒前
16秒前
hajy发布了新的文献求助10
19秒前
Sheila发布了新的文献求助10
20秒前
香蕉觅云应助keyanniniz采纳,获得10
22秒前
ZHAZHA完成签到,获得积分10
22秒前
风中追风发布了新的文献求助10
23秒前
模糊中正应助Polymer72采纳,获得30
26秒前
852应助光亮向真采纳,获得30
26秒前
汉堡包应助wenwen采纳,获得10
27秒前
快乐学习每一天完成签到 ,获得积分10
27秒前
852应助南初采纳,获得50
28秒前
丘比特应助TANGYU采纳,获得10
29秒前
29秒前
Billy应助Sheila采纳,获得30
32秒前
33秒前
wanci应助跳跃幻莲采纳,获得10
34秒前
35秒前
xxhh完成签到 ,获得积分20
37秒前
37秒前
38秒前
38秒前
希希完成签到 ,获得积分10
39秒前
唐小刚完成签到,获得积分10
39秒前
科研兄发布了新的文献求助10
40秒前
wenwen发布了新的文献求助10
40秒前
41秒前
keyanniniz发布了新的文献求助10
41秒前
隐形芹应助科研通管家采纳,获得10
41秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343779
求助须知:如何正确求助?哪些是违规求助? 2970859
关于积分的说明 8645455
捐赠科研通 2650916
什么是DOI,文献DOI怎么找? 1451530
科研通“疑难数据库(出版商)”最低求助积分说明 672145
邀请新用户注册赠送积分活动 661681