Fractal networks: Topology, dimension, and complexity

分形 图论 拓扑(电路) 数学 计算拓扑学 网络科学 离散空间 理论计算机科学 Lebesgue覆盖尺寸 复杂网络 交叉口(航空) 计算机科学 豪斯多夫维数 纯数学 组合数学 数学分析 标量场 工程类 数学物理 航空航天工程
作者
Leonid Bunimovich,Pavel Skums
出处
期刊:Chaos [American Institute of Physics]
卷期号:34 (4) 被引量:2
标识
DOI:10.1063/5.0200632
摘要

Over the past two decades, the study of self-similarity and fractality in discrete structures, particularly complex networks, has gained momentum. This surge of interest is fueled by the theoretical developments within the theory of complex networks and the practical demands of real-world applications. Nonetheless, translating the principles of fractal geometry from the domain of general topology, dealing with continuous or infinite objects, to finite structures in a mathematically rigorous way poses a formidable challenge. In this paper, we overview such a theory that allows to identify and analyze fractal networks through the innate methodologies of graph theory and combinatorics. It establishes the direct graph-theoretical analogs of topological (Lebesgue) and fractal (Hausdorff) dimensions in a way that naturally links them to combinatorial parameters that have been studied within the realm of graph theory for decades. This allows to demonstrate that the self-similarity in networks is defined by the patterns of intersection among densely connected network communities. Moreover, the theory bridges discrete and continuous definitions by demonstrating how the combinatorial characterization of Lebesgue dimension via graph representation by its subsets (subgraphs/communities) extends to general topological spaces. Using this framework, we rigorously define fractal networks and connect their properties with established combinatorial concepts, such as graph colorings and descriptive complexity. The theoretical framework surveyed here sets a foundation for applications to real-life networks and future studies of fractal characteristics of complex networks using combinatorial methods and algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助小灰灰采纳,获得10
1秒前
wanci应助高贵的玉米采纳,获得10
1秒前
xx发布了新的文献求助10
1秒前
1秒前
打打应助要懒死了hhh采纳,获得10
1秒前
是77呀完成签到,获得积分10
2秒前
sam完成签到 ,获得积分10
2秒前
xanderxue完成签到,获得积分20
2秒前
是科研太小了完成签到 ,获得积分10
2秒前
2秒前
xing525888发布了新的文献求助10
3秒前
4秒前
科研通AI5应助小火车采纳,获得10
5秒前
5秒前
直率的雪晴完成签到,获得积分10
6秒前
6秒前
1234发布了新的文献求助10
6秒前
汉堡包应助liii采纳,获得10
7秒前
Lemon发布了新的文献求助10
7秒前
8秒前
SHAN发布了新的文献求助10
8秒前
batmanrobin完成签到,获得积分10
9秒前
日富一日完成签到,获得积分10
9秒前
缓一缓vyv发布了新的文献求助10
9秒前
9秒前
F_A完成签到,获得积分10
11秒前
斌斌发布了新的文献求助10
11秒前
12秒前
日富一日发布了新的文献求助10
13秒前
13秒前
Orange应助辰123采纳,获得10
14秒前
科目三应助龙华之士采纳,获得10
14秒前
16秒前
ZZ完成签到,获得积分10
17秒前
17秒前
幽默的谷梦完成签到,获得积分10
17秒前
xing525888完成签到,获得积分10
18秒前
18秒前
18秒前
Lemon关注了科研通微信公众号
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543142
求助须知:如何正确求助?哪些是违规求助? 3120548
关于积分的说明 9343199
捐赠科研通 2818601
什么是DOI,文献DOI怎么找? 1549668
邀请新用户注册赠送积分活动 722221
科研通“疑难数据库(出版商)”最低求助积分说明 713076