Decoding of lower limb continuous movement intention from multi-channel sEMG and design of adaptive exoskeleton controller

外骨骼 计算机科学 控制器(灌溉) 弹道 控制理论(社会学) 动力外骨骼 人工神经网络 径向基函数 扭矩 人工智能 模拟 控制(管理) 生物 物理 热力学 天文 农学
作者
Xiaoyun Wang,Changhe Zhang,Zidong Yu,Chao Deng
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:94: 106245-106245
标识
DOI:10.1016/j.bspc.2024.106245
摘要

The utilization of robot-assisted rehabilitation training has shown promising results in promoting motor recovery in neurologically impaired patients. However, current methods are limited to predefined desired trajectories, disregarding individual variations. Therefore, this article introduces a subject-based active rehabilitation training framework for lower limb daily activities, focusing on integrating intention perception and compliance control. To accurately interpret human intention, this study proposes a divided Spatial-temporal Attention EMG Network (dSTA-EMGNet) model for the time-advancing prediction of the trajectory of the knee joint with multi-channel surface electromyographic signals. Subsequently, an admittance adaptive control scheme is formulated based on the Nonlinear Disturbance Observer (NDO) technique. Initially, an admittance model is utilized to ensure compliant behavior of the exoskeleton, with the NDO estimating the real-time torque resulting from human-exoskeleton interaction. Furthermore, a novel adaptive controller employing a radial basis function neural network is devised to address the feedforward compensation of dynamic uncertainties. Experimental findings indicate that the proposed dSTA-EMGNet exhibits superior predictive capabilities, as evidenced by a mean value of the coefficient of determination exceeding 0.982 ± 0.007 and an average absolute error lower than 2.597°±0.742°. Furthermore, the implemented control scheme shows commendable motion-tracking proficiency and exceptional compliance, affirming the efficacy of the proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
平淡思雁完成签到,获得积分10
2秒前
2秒前
脑洞疼应助现代的雪糕采纳,获得10
4秒前
猪肉超人菜婴蚊完成签到,获得积分10
4秒前
辛勤的奇异果完成签到,获得积分10
5秒前
大面包发布了新的文献求助10
9秒前
蜀黍发布了新的文献求助10
9秒前
11秒前
华仔应助辛勤的奇异果采纳,获得10
12秒前
12秒前
机智的灵萱完成签到,获得积分10
12秒前
13秒前
dzk完成签到,获得积分10
14秒前
15秒前
15秒前
zjm1441发布了新的文献求助10
15秒前
yang完成签到,获得积分20
15秒前
Helen发布了新的文献求助10
16秒前
17秒前
邱老黑发布了新的文献求助10
18秒前
20秒前
21秒前
WMT完成签到 ,获得积分10
22秒前
休斯顿完成签到,获得积分10
23秒前
23秒前
老实雁蓉完成签到,获得积分10
24秒前
程星宇发布了新的文献求助10
25秒前
25秒前
木南完成签到 ,获得积分10
26秒前
卡卡西应助白杨采纳,获得20
26秒前
27秒前
zjm1441完成签到,获得积分10
29秒前
30秒前
30秒前
善学以致用应助苗玉采纳,获得10
31秒前
上章发布了新的文献求助10
32秒前
32秒前
33秒前
swjs08完成签到,获得积分10
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958130
求助须知:如何正确求助?哪些是违规求助? 3504312
关于积分的说明 11117892
捐赠科研通 3235623
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547