Seizure detection via deterministic learning feature extraction

人工智能 计算机科学 模式识别(心理学) 特征提取 特征(语言学) 萃取(化学) 机器学习 色谱法 化学 哲学 语言学
作者
Zirui Zhang,Weiming Wu,Chen Sun,Cong Wang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:153: 110466-110466 被引量:4
标识
DOI:10.1016/j.patcog.2024.110466
摘要

Epileptic seizures have a significant impact on the well-being of a large number of individuals worldwide. Utilizing electroencephalographic (EEG) signals for automatic seizure detection proves to be a valuable solution. However, dealing with raw EEG signals is inherently complex, necessitating a preliminary step of feature extraction prior to detection. Traditional feature extraction methods often amalgamate various types of features for seizure detection, as each type typically captures specific properties. In contrast, this paper focuses on detecting seizures by analyzing the system dynamics. The proposed Deterministic Learning Feature Extraction (DLFE) method extracts a single type of nonlinear dynamical feature rooted in the EEG system dynamics. DLFE employs deterministic learning to discern the inherent system dynamics of the EEG under both seizure and normal conditions. Through the feature extraction process, the infinite-dimensional system dynamics are transformed into feature vectors, exhibiting distinct distributions in seizure and normal states. This disparity can be effectively utilized for classification using standard classifiers. The performance of the proposed seizure detection method was assessed using the CHB-MIT and Bonn datasets. The average classification accuracy was found to be 98.63% with a specificity of 99.19% and a sensitivity of 98.06% on CHB-MIT dataset. Compared with the latest similar methods, the accuracy, specificity and sensitivity are improved by 0.31%, 0.21% and 0.05% respectively. Moreover, the performance was achieved with the short-time interval EEG signals within a few channels. The average classification accuracy was found to be 99.90% with a 0.22% improvement on Bonn dataset, which indicates the good generalization performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
搜集达人应助路人采纳,获得10
4秒前
5秒前
5秒前
5秒前
CipherSage应助灵巧帽子采纳,获得20
6秒前
轻松凌柏完成签到 ,获得积分10
6秒前
chem12完成签到,获得积分10
6秒前
坦率邪欢发布了新的文献求助10
6秒前
9秒前
najd完成签到 ,获得积分10
9秒前
9秒前
轩轩轩轩完成签到 ,获得积分10
11秒前
脑洞疼应助Demi采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
想毕业的小杰完成签到 ,获得积分10
13秒前
材料人一枚关注了科研通微信公众号
13秒前
15秒前
蔡正雄完成签到,获得积分10
15秒前
fanf发布了新的文献求助10
16秒前
淡然冬灵发布了新的文献求助10
19秒前
yun完成签到 ,获得积分10
19秒前
23秒前
Sue完成签到 ,获得积分10
24秒前
sunc发布了新的文献求助10
27秒前
科研小菜完成签到 ,获得积分10
27秒前
SPark发布了新的文献求助10
28秒前
29秒前
嘿嘿应助陈研生采纳,获得10
29秒前
Lasse发布了新的文献求助10
30秒前
眯眯眼的宛白完成签到,获得积分20
32秒前
34秒前
我崽了你发布了新的文献求助30
35秒前
36秒前
fanf完成签到,获得积分10
37秒前
完美世界应助mayun95采纳,获得10
38秒前
量子星尘发布了新的文献求助10
39秒前
ashin17发布了新的文献求助10
41秒前
41秒前
科研通AI2S应助cxw采纳,获得10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716