Seizure detection via deterministic learning feature extraction

人工智能 计算机科学 模式识别(心理学) 特征提取 特征(语言学) 萃取(化学) 机器学习 色谱法 化学 哲学 语言学
作者
Zirui Zhang,Weiming Wu,Chen Sun,Cong Wang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:153: 110466-110466 被引量:4
标识
DOI:10.1016/j.patcog.2024.110466
摘要

Epileptic seizures have a significant impact on the well-being of a large number of individuals worldwide. Utilizing electroencephalographic (EEG) signals for automatic seizure detection proves to be a valuable solution. However, dealing with raw EEG signals is inherently complex, necessitating a preliminary step of feature extraction prior to detection. Traditional feature extraction methods often amalgamate various types of features for seizure detection, as each type typically captures specific properties. In contrast, this paper focuses on detecting seizures by analyzing the system dynamics. The proposed Deterministic Learning Feature Extraction (DLFE) method extracts a single type of nonlinear dynamical feature rooted in the EEG system dynamics. DLFE employs deterministic learning to discern the inherent system dynamics of the EEG under both seizure and normal conditions. Through the feature extraction process, the infinite-dimensional system dynamics are transformed into feature vectors, exhibiting distinct distributions in seizure and normal states. This disparity can be effectively utilized for classification using standard classifiers. The performance of the proposed seizure detection method was assessed using the CHB-MIT and Bonn datasets. The average classification accuracy was found to be 98.63% with a specificity of 99.19% and a sensitivity of 98.06% on CHB-MIT dataset. Compared with the latest similar methods, the accuracy, specificity and sensitivity are improved by 0.31%, 0.21% and 0.05% respectively. Moreover, the performance was achieved with the short-time interval EEG signals within a few channels. The average classification accuracy was found to be 99.90% with a 0.22% improvement on Bonn dataset, which indicates the good generalization performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
LingMg发布了新的文献求助10
1秒前
纸万完成签到,获得积分10
1秒前
2秒前
麦辣鸡腿堡完成签到,获得积分10
2秒前
acuis发布了新的文献求助10
2秒前
王镇发布了新的文献求助10
2秒前
HOAN应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
JayceHe应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
holly完成签到,获得积分10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
Virgil完成签到,获得积分10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
虚幻导师发布了新的文献求助10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
3秒前
李健应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
爱笑如蓉完成签到,获得积分10
4秒前
kiminonawa应助科研通管家采纳,获得10
4秒前
4秒前
HOAN应助科研通管家采纳,获得10
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717887
求助须知:如何正确求助?哪些是违规求助? 5248869
关于积分的说明 15283627
捐赠科研通 4867961
什么是DOI,文献DOI怎么找? 2613978
邀请新用户注册赠送积分活动 1563880
关于科研通互助平台的介绍 1521369