Seizure detection via deterministic learning feature extraction

人工智能 计算机科学 模式识别(心理学) 特征提取 特征(语言学) 萃取(化学) 机器学习 色谱法 化学 哲学 语言学
作者
Zirui Zhang,Weiming Wu,Chen Sun,Cong Wang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:153: 110466-110466 被引量:4
标识
DOI:10.1016/j.patcog.2024.110466
摘要

Epileptic seizures have a significant impact on the well-being of a large number of individuals worldwide. Utilizing electroencephalographic (EEG) signals for automatic seizure detection proves to be a valuable solution. However, dealing with raw EEG signals is inherently complex, necessitating a preliminary step of feature extraction prior to detection. Traditional feature extraction methods often amalgamate various types of features for seizure detection, as each type typically captures specific properties. In contrast, this paper focuses on detecting seizures by analyzing the system dynamics. The proposed Deterministic Learning Feature Extraction (DLFE) method extracts a single type of nonlinear dynamical feature rooted in the EEG system dynamics. DLFE employs deterministic learning to discern the inherent system dynamics of the EEG under both seizure and normal conditions. Through the feature extraction process, the infinite-dimensional system dynamics are transformed into feature vectors, exhibiting distinct distributions in seizure and normal states. This disparity can be effectively utilized for classification using standard classifiers. The performance of the proposed seizure detection method was assessed using the CHB-MIT and Bonn datasets. The average classification accuracy was found to be 98.63% with a specificity of 99.19% and a sensitivity of 98.06% on CHB-MIT dataset. Compared with the latest similar methods, the accuracy, specificity and sensitivity are improved by 0.31%, 0.21% and 0.05% respectively. Moreover, the performance was achieved with the short-time interval EEG signals within a few channels. The average classification accuracy was found to be 99.90% with a 0.22% improvement on Bonn dataset, which indicates the good generalization performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cc66发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
虚拟的皮卡丘完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
5秒前
bow完成签到 ,获得积分10
5秒前
9秒前
优雅的WAN完成签到 ,获得积分10
10秒前
所所应助cc66采纳,获得10
10秒前
LQ完成签到,获得积分10
11秒前
hui完成签到,获得积分10
11秒前
无心的天真完成签到 ,获得积分10
12秒前
君莫笑完成签到,获得积分10
12秒前
热心不凡完成签到,获得积分10
15秒前
乌特拉完成签到 ,获得积分10
15秒前
晚风完成签到,获得积分10
15秒前
元夕完成签到,获得积分10
15秒前
飘逸蘑菇完成签到 ,获得积分10
17秒前
风中的棒棒糖完成签到 ,获得积分10
20秒前
无私的听荷完成签到,获得积分10
20秒前
飘萍过客完成签到,获得积分10
21秒前
21秒前
22秒前
22秒前
皛鱼完成签到,获得积分10
24秒前
大脸猫完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
26秒前
小林神发布了新的文献求助10
26秒前
adamchris完成签到,获得积分10
26秒前
strama完成签到,获得积分10
27秒前
梓唯忧完成签到 ,获得积分10
28秒前
28秒前
pan完成签到,获得积分10
28秒前
科研通AI6.1应助michael采纳,获得30
30秒前
Cooper应助昏睡的听云采纳,获得10
30秒前
Yuan完成签到,获得积分10
31秒前
碧蓝百合发布了新的文献求助10
33秒前
小林神完成签到,获得积分10
33秒前
33秒前
强小强完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789548
求助须知:如何正确求助?哪些是违规求助? 5721282
关于积分的说明 15474982
捐赠科研通 4917368
什么是DOI,文献DOI怎么找? 2646953
邀请新用户注册赠送积分活动 1594561
关于科研通互助平台的介绍 1549099