Seizure detection via deterministic learning feature extraction

人工智能 计算机科学 模式识别(心理学) 特征提取 特征(语言学) 萃取(化学) 机器学习 色谱法 化学 哲学 语言学
作者
Zirui Zhang,Weiming Wu,Chen Sun,Cong Wang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:153: 110466-110466 被引量:4
标识
DOI:10.1016/j.patcog.2024.110466
摘要

Epileptic seizures have a significant impact on the well-being of a large number of individuals worldwide. Utilizing electroencephalographic (EEG) signals for automatic seizure detection proves to be a valuable solution. However, dealing with raw EEG signals is inherently complex, necessitating a preliminary step of feature extraction prior to detection. Traditional feature extraction methods often amalgamate various types of features for seizure detection, as each type typically captures specific properties. In contrast, this paper focuses on detecting seizures by analyzing the system dynamics. The proposed Deterministic Learning Feature Extraction (DLFE) method extracts a single type of nonlinear dynamical feature rooted in the EEG system dynamics. DLFE employs deterministic learning to discern the inherent system dynamics of the EEG under both seizure and normal conditions. Through the feature extraction process, the infinite-dimensional system dynamics are transformed into feature vectors, exhibiting distinct distributions in seizure and normal states. This disparity can be effectively utilized for classification using standard classifiers. The performance of the proposed seizure detection method was assessed using the CHB-MIT and Bonn datasets. The average classification accuracy was found to be 98.63% with a specificity of 99.19% and a sensitivity of 98.06% on CHB-MIT dataset. Compared with the latest similar methods, the accuracy, specificity and sensitivity are improved by 0.31%, 0.21% and 0.05% respectively. Moreover, the performance was achieved with the short-time interval EEG signals within a few channels. The average classification accuracy was found to be 99.90% with a 0.22% improvement on Bonn dataset, which indicates the good generalization performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yi完成签到,获得积分10
1秒前
飞云发布了新的文献求助10
1秒前
2秒前
温暖天与应助杨文彬采纳,获得10
2秒前
科研发布了新的文献求助10
2秒前
Ava应助Ammon采纳,获得10
2秒前
缓慢的孱应助Criminology34采纳,获得100
3秒前
小蘑菇应助小树采纳,获得10
3秒前
PhysicsXX完成签到,获得积分10
3秒前
hiizhere发布了新的文献求助10
3秒前
Jasper应助激昂的如柏采纳,获得10
5秒前
5秒前
5秒前
Yi发布了新的文献求助10
6秒前
6秒前
漂亮的不言完成签到 ,获得积分10
6秒前
凯_m完成签到,获得积分10
6秒前
粉红色的小花卷完成签到,获得积分10
7秒前
7秒前
研友_VZG7GZ应助猪猪hero采纳,获得10
7秒前
西西发布了新的文献求助10
8秒前
小蘑菇应助飞云采纳,获得10
9秒前
丁仪发布了新的文献求助10
9秒前
Junex发布了新的文献求助10
10秒前
行走De太阳花完成签到,获得积分10
11秒前
11秒前
我是老大应助ruirui采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
hehexi完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
浮游应助结实黑猫采纳,获得10
14秒前
丁仪完成签到,获得积分10
14秒前
小青椒应助王贤平采纳,获得30
15秒前
15秒前
求文献发布了新的文献求助10
16秒前
16秒前
领导范儿应助QZF采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684580
求助须知:如何正确求助?哪些是违规求助? 5037579
关于积分的说明 15184614
捐赠科研通 4843828
什么是DOI,文献DOI怎么找? 2596943
邀请新用户注册赠送积分活动 1549548
关于科研通互助平台的介绍 1508057