DepressionMLP: A Multi-Layer Perceptron Architecture for Automatic Depression Level Prediction via Facial Keypoints and Action Units

计算机科学 人工智能 感知器 图层(电子) 动作(物理) 模式识别(心理学) 建筑 计算机视觉 人工神经网络 艺术 化学 物理 有机化学 量子力学 视觉艺术
作者
Mingyue Niu,Ya Li,Jianhua Tao,Xiuzhuang Zhou,Björn W. Schuller
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/tcsvt.2024.3382334
摘要

Physiological studies have confirmed that there are differences in facial activities between depressed and healthy individuals. Therefore, while protecting the privacy of subjects, substantial efforts are made to predict the depression severity of individuals by analyzing Facial Keypoints Representation Sequences (FKRS) and Action Units Representation Sequences (AURS). However, those works has struggled to examine the spatial distribution and temporal changes of Facial Keypoints (FKs) and Action Units (AUs) simultaneously, which is limited in extracting the facial dynamics characterizing depressive cues. Besides, those works don't realize the complementarity of effective information extracted from FKRS and AURS, which reduces the prediction accuracy. To this end, we intend to use the recently proposed Multi-Layer Perceptrons with gating (gMLP) architecture to process FKRS and AURS for predicting depression levels. However, the channel projection in the gMLP disrupts the spatial distribution of FKs and AUs, leading to input and output sequences not having the same spatiotemporal attributes. This discrepancy hinders the additivity of residual connections in a physical sense. Therefore, we construct a novel MLP architecture named DepressionMLP. In this model, we propose the Dual Gating (DG) and Mutual Guidance (MG) modules. The DG module embeds cross-location and cross-frame gating results into the input sequence to maintain the physical properties of data to make up for the shortcomings of gMLP. The MG module takes the global information of FKRS (AURS) as a guidance mask to filter the AURS (FKRS) to achieve the interaction between FKRS and AURS. Experimental results on several benchmark datasets show the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赫幼蓉发布了新的文献求助10
刚刚
刚刚
1秒前
白白不读书完成签到 ,获得积分10
1秒前
1秒前
河河发布了新的文献求助10
1秒前
2秒前
2秒前
可爱访卉发布了新的文献求助10
2秒前
3秒前
猪在海中游完成签到,获得积分20
4秒前
4秒前
wangyuchen发布了新的文献求助10
4秒前
小胖爱学习完成签到,获得积分10
5秒前
SYLH应助Master_Ye采纳,获得10
5秒前
5秒前
贝贝发布了新的文献求助10
5秒前
jellyfish发布了新的文献求助20
6秒前
6秒前
6秒前
核桃应助粥粥爱糊糊采纳,获得10
6秒前
华仔应助迅速向日葵采纳,获得10
6秒前
TOURIN平行完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
LLL完成签到 ,获得积分10
8秒前
8秒前
草莓灰灰发布了新的文献求助10
8秒前
9秒前
9秒前
lily发布了新的文献求助10
10秒前
天天快乐应助GSD采纳,获得10
10秒前
阿林琳琳发布了新的文献求助10
10秒前
11秒前
Hello应助shinn采纳,获得10
12秒前
天天快乐应助结实红酒采纳,获得10
12秒前
明理丹云关注了科研通微信公众号
13秒前
完美世界应助sunzhuxi采纳,获得10
13秒前
蛋子s完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950931
求助须知:如何正确求助?哪些是违规求助? 3496322
关于积分的说明 11081419
捐赠科研通 3226783
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868029
科研通“疑难数据库(出版商)”最低求助积分说明 800993