DepressionMLP: A Multi-Layer Perceptron Architecture for Automatic Depression Level Prediction via Facial Keypoints and Action Units

计算机科学 人工智能 感知器 图层(电子) 动作(物理) 模式识别(心理学) 建筑 计算机视觉 人工神经网络 艺术 化学 物理 有机化学 量子力学 视觉艺术
作者
Mingyue Niu,Ya Li,Jianhua Tao,Xiuzhuang Zhou,Björn Schüller
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tcsvt.2024.3382334
摘要

Physiological studies have confirmed that there are differences in facial activities between depressed and healthy individuals. Therefore, while protecting the privacy of subjects, substantial efforts are made to predict the depression severity of individuals by analyzing Facial Keypoints Representation Sequences (FKRS) and Action Units Representation Sequences (AURS). However, those works has struggled to examine the spatial distribution and temporal changes of Facial Keypoints (FKs) and Action Units (AUs) simultaneously, which is limited in extracting the facial dynamics characterizing depressive cues. Besides, those works don't realize the complementarity of effective information extracted from FKRS and AURS, which reduces the prediction accuracy. To this end, we intend to use the recently proposed Multi-Layer Perceptrons with gating (gMLP) architecture to process FKRS and AURS for predicting depression levels. However, the channel projection in the gMLP disrupts the spatial distribution of FKs and AUs, leading to input and output sequences not having the same spatiotemporal attributes. This discrepancy hinders the additivity of residual connections in a physical sense. Therefore, we construct a novel MLP architecture named DepressionMLP. In this model, we propose the Dual Gating (DG) and Mutual Guidance (MG) modules. The DG module embeds cross-location and cross-frame gating results into the input sequence to maintain the physical properties of data to make up for the shortcomings of gMLP. The MG module takes the global information of FKRS (AURS) as a guidance mask to filter the AURS (FKRS) to achieve the interaction between FKRS and AURS. Experimental results on several benchmark datasets show the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚心若血发布了新的文献求助10
刚刚
1秒前
调研昵称发布了新的文献求助10
1秒前
ding应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
quhayley应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得30
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
薰硝壤应助科研通管家采纳,获得30
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
quhayley应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
2秒前
mdmdd完成签到,获得积分10
2秒前
无私黑猫完成签到,获得积分10
2秒前
肉肉发布了新的文献求助10
2秒前
2秒前
3秒前
朝晖夕阴发布了新的文献求助10
3秒前
知性的冰棍完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
5秒前
6秒前
6秒前
7秒前
今后应助yulin采纳,获得10
8秒前
踏实水之发布了新的文献求助10
8秒前
keke发布了新的文献求助50
8秒前
9秒前
上进生发布了新的文献求助10
9秒前
小蘑菇应助董浩采纳,获得10
9秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
麻省总医院内科手册(原著第8版) (美)马克S.萨巴蒂尼,英文版即可,因为没有中文版。 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156631
求助须知:如何正确求助?哪些是违规求助? 2808058
关于积分的说明 7876045
捐赠科研通 2466421
什么是DOI,文献DOI怎么找? 1312876
科研通“疑难数据库(出版商)”最低求助积分说明 630299
版权声明 601919