已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Evaluation of machine learning models for cytochrome P450 3A4, 2D6, and 2C9 inhibition

机器学习 人工智能 计算机科学 生物信息学 细胞色素P450 药物发现 深度学习 CYP3A4型 化学 CYP2C9 生物化学 生物信息学 生物 基因
作者
Changda Gong,Yanjun Feng,Jieyu Zhu,Guixia Liu,Yun Tang,Weihua Li
出处
期刊:Journal of Applied Toxicology [Wiley]
卷期号:44 (7): 1050-1066 被引量:3
标识
DOI:10.1002/jat.4601
摘要

Abstract Cytochrome P450 (CYP) enzymes are involved in the metabolism of approximately 75% of marketed drugs. Inhibition of the major drug‐metabolizing P450s could alter drug metabolism and lead to undesirable drug–drug interactions. Therefore, it is of great significance to explore the inhibition of P450s in drug discovery. Currently, machine learning including deep learning algorithms has been widely used for constructing in silico models for the prediction of P450 inhibition. These models exhibited varying predictive performance depending on the use of machine learning algorithms and molecular representations. This leads to the difficulty in the selection of appropriate models for practical use. In this study, we systematically evaluated the conventional machine learning and deep learning models for three major P450 enzymes, CYP3A4, CYP2D6, and CYP2C9 from several perspectives, such as algorithms, molecular representation, and data partitioning strategies. Our results showed that the XGBoost and CatBoost algorithms coupled with the combined fingerprint/physicochemical descriptor features exhibited the best performance with Area Under Curve (AUC) of 0.92, while the deep learning models were generally inferior to the conventional machine learning models (average AUC reached 0.89) on the same test sets. We also found that data volume and sampling strategy had a minor effect on model performance. We anticipate that these results are helpful for the selection of molecular representations and machine learning/deep learning algorithms in the P450 model construction and the future model development of P450 inhibition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助Wdw2236采纳,获得10
刚刚
1秒前
1秒前
天天快乐应助长雁采纳,获得10
3秒前
Cl完成签到,获得积分10
6秒前
zoe完成签到 ,获得积分10
7秒前
8秒前
8秒前
江江江发布了新的文献求助10
9秒前
瘦瘦青文完成签到 ,获得积分10
9秒前
清脆的机器猫完成签到,获得积分10
10秒前
yyy发布了新的文献求助10
14秒前
思源应助cyy采纳,获得10
15秒前
lun完成签到 ,获得积分10
15秒前
鲤鱼寻菡完成签到 ,获得积分10
16秒前
wang5945完成签到 ,获得积分10
16秒前
19秒前
zqr完成签到,获得积分10
20秒前
月亮发布了新的文献求助10
21秒前
Green完成签到,获得积分10
22秒前
随机科研完成签到,获得积分10
23秒前
lkx关注了科研通微信公众号
23秒前
文化沙漠发布了新的文献求助10
24秒前
ni发布了新的文献求助10
26秒前
27秒前
32秒前
33秒前
PDE完成签到,获得积分10
34秒前
35秒前
36秒前
Woo_SH发布了新的文献求助10
38秒前
Elsa完成签到,获得积分10
40秒前
Tangyuan发布了新的文献求助10
41秒前
大模型应助ni采纳,获得10
41秒前
41秒前
科研通AI2S应助lkx采纳,获得10
41秒前
多情的如冰完成签到 ,获得积分10
42秒前
Akim应助不想写sci的黄采纳,获得10
42秒前
科研通AI6.1应助abcd采纳,获得10
42秒前
霸王萝卜丝完成签到,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772052
求助须知:如何正确求助?哪些是违规求助? 5595492
关于积分的说明 15428899
捐赠科研通 4905183
什么是DOI,文献DOI怎么找? 2639251
邀请新用户注册赠送积分活动 1587158
关于科研通互助平台的介绍 1542040