Evaluation of machine learning models for cytochrome P450 3A4, 2D6, and 2C9 inhibition

机器学习 人工智能 计算机科学 生物信息学 细胞色素P450 药物发现 深度学习 CYP3A4型 化学 CYP2C9 生物化学 生物信息学 生物 基因
作者
Changda Gong,Yanjun Feng,Jieyu Zhu,Guixia Liu,Yun Tang,Weihua Li
出处
期刊:Journal of Applied Toxicology [Wiley]
卷期号:44 (7): 1050-1066 被引量:2
标识
DOI:10.1002/jat.4601
摘要

Abstract Cytochrome P450 (CYP) enzymes are involved in the metabolism of approximately 75% of marketed drugs. Inhibition of the major drug‐metabolizing P450s could alter drug metabolism and lead to undesirable drug–drug interactions. Therefore, it is of great significance to explore the inhibition of P450s in drug discovery. Currently, machine learning including deep learning algorithms has been widely used for constructing in silico models for the prediction of P450 inhibition. These models exhibited varying predictive performance depending on the use of machine learning algorithms and molecular representations. This leads to the difficulty in the selection of appropriate models for practical use. In this study, we systematically evaluated the conventional machine learning and deep learning models for three major P450 enzymes, CYP3A4, CYP2D6, and CYP2C9 from several perspectives, such as algorithms, molecular representation, and data partitioning strategies. Our results showed that the XGBoost and CatBoost algorithms coupled with the combined fingerprint/physicochemical descriptor features exhibited the best performance with Area Under Curve (AUC) of 0.92, while the deep learning models were generally inferior to the conventional machine learning models (average AUC reached 0.89) on the same test sets. We also found that data volume and sampling strategy had a minor effect on model performance. We anticipate that these results are helpful for the selection of molecular representations and machine learning/deep learning algorithms in the P450 model construction and the future model development of P450 inhibition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻松的囧发布了新的文献求助10
刚刚
2秒前
2秒前
2秒前
2秒前
dg_fisher发布了新的文献求助10
3秒前
lqj完成签到,获得积分10
4秒前
学术小白发布了新的文献求助10
4秒前
周周发布了新的文献求助20
4秒前
上官若男应助木子采纳,获得10
7秒前
研都不研了完成签到 ,获得积分10
7秒前
lqj发布了新的文献求助10
7秒前
8秒前
传奇3应助聪明的归尘采纳,获得10
8秒前
鹊起发布了新的文献求助10
8秒前
8秒前
11秒前
斯文败类应助yy采纳,获得10
11秒前
11秒前
12秒前
orixero应助Adzuki0812采纳,获得10
13秒前
14秒前
坦率的媚颜完成签到,获得积分10
15秒前
周周发布了新的文献求助20
15秒前
爆米花完成签到,获得积分10
15秒前
lsybf发布了新的文献求助10
15秒前
成就完成签到,获得积分10
16秒前
ster223发布了新的文献求助10
16秒前
xixi发布了新的文献求助10
19秒前
19秒前
科研通AI6应助xxxxxxxxx采纳,获得10
20秒前
20秒前
风清扬发布了新的文献求助10
20秒前
初见秋风完成签到,获得积分10
21秒前
科研笨猪完成签到,获得积分20
22秒前
de铭完成签到,获得积分10
22秒前
23秒前
24秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5271588
求助须知:如何正确求助?哪些是违规求助? 4429244
关于积分的说明 13787991
捐赠科研通 4307583
什么是DOI,文献DOI怎么找? 2363636
邀请新用户注册赠送积分活动 1359308
关于科研通互助平台的介绍 1322221