Evaluation of machine learning models for cytochrome P450 3A4, 2D6, and 2C9 inhibition

机器学习 人工智能 计算机科学 生物信息学 细胞色素P450 药物发现 深度学习 CYP3A4型 化学 CYP2C9 生物化学 生物信息学 生物 基因
作者
Changda Gong,Yanjun Feng,Jieyu Zhu,Guixia Liu,Yun Tang,Weihua Li
出处
期刊:Journal of Applied Toxicology [Wiley]
卷期号:44 (7): 1050-1066 被引量:1
标识
DOI:10.1002/jat.4601
摘要

Abstract Cytochrome P450 (CYP) enzymes are involved in the metabolism of approximately 75% of marketed drugs. Inhibition of the major drug‐metabolizing P450s could alter drug metabolism and lead to undesirable drug–drug interactions. Therefore, it is of great significance to explore the inhibition of P450s in drug discovery. Currently, machine learning including deep learning algorithms has been widely used for constructing in silico models for the prediction of P450 inhibition. These models exhibited varying predictive performance depending on the use of machine learning algorithms and molecular representations. This leads to the difficulty in the selection of appropriate models for practical use. In this study, we systematically evaluated the conventional machine learning and deep learning models for three major P450 enzymes, CYP3A4, CYP2D6, and CYP2C9 from several perspectives, such as algorithms, molecular representation, and data partitioning strategies. Our results showed that the XGBoost and CatBoost algorithms coupled with the combined fingerprint/physicochemical descriptor features exhibited the best performance with Area Under Curve (AUC) of 0.92, while the deep learning models were generally inferior to the conventional machine learning models (average AUC reached 0.89) on the same test sets. We also found that data volume and sampling strategy had a minor effect on model performance. We anticipate that these results are helpful for the selection of molecular representations and machine learning/deep learning algorithms in the P450 model construction and the future model development of P450 inhibition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美丽的韩小姐完成签到,获得积分10
刚刚
纪外绣完成签到,获得积分10
刚刚
老实皮皮虾完成签到,获得积分10
刚刚
1秒前
感谢有你完成签到 ,获得积分10
2秒前
专心搞学术完成签到,获得积分10
2秒前
园艺小学生完成签到,获得积分10
2秒前
dy完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
yuzhi完成签到,获得积分10
3秒前
大俊哥发布了新的文献求助10
4秒前
Lawrence完成签到,获得积分10
4秒前
NEO完成签到 ,获得积分10
4秒前
白茶完成签到,获得积分10
5秒前
5秒前
唯梦发布了新的文献求助10
6秒前
实验好难应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
追寻烤鸡发布了新的文献求助10
8秒前
澡雪完成签到,获得积分10
8秒前
8秒前
KK完成签到,获得积分10
8秒前
8秒前
SciGPT应助王小橘采纳,获得10
8秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3750098
求助须知:如何正确求助?哪些是违规求助? 3293388
关于积分的说明 10081485
捐赠科研通 3008743
什么是DOI,文献DOI怎么找? 1652384
邀请新用户注册赠送积分活动 787426
科研通“疑难数据库(出版商)”最低求助积分说明 752179