Reinforcement Learning based Droplet Routing Technique in Hexagonal Digital Microfluidic Biochips using Dueling Network

生物芯片 强化学习 微流控 布线(电子设计自动化) 计算机科学 六方晶系 钢筋 材料科学 计算机体系结构 纳米技术 计算机网络 人工智能 复合材料 化学 结晶学
作者
Amartya Dutta,Riya Majumder,Rajat Kumar Pal
标识
DOI:10.1109/vlsid60093.2024.00016
摘要

Droplet route planning between the reconfigurable modules and modules to I/O ports is a very essential step in chip design and finding optimised routes is an NP-complete problem. Various routing algorithms like A* heuristic search-based algorithm, prioritised A* algorithm, network flow-based routing and parallel high-performance routing inspired by the graph colouring problem, etc. have been advanced to construe the droplet routing operation in the microfluidic realm. It is prominent that many of these previous studies are based on the prior knowledge of the route network. Here a reinforcement learning based Q learning technique is used to find out the optimal paths where the dueling architecture is used to form a dueling deep Q network throughout the chip array. The agent is the droplet, which learns through dueling deep Q network to avoid obstacles and outperforms the state-of-the-art on DMFB routing domain. In this proposed algorithm, for any obstacles in the droplet paths, the route compaction is concluded with the stalling and detouring methods. The simulation results exhibit better policy evaluation than previous approaches by avoiding unnecessary estimations of values under each action to the environment. The output value of the deep Q network is combined with the reward function and it is added to the reinforcement learning training in the guise of total reward.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
2秒前
今后应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得20
2秒前
慕青应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得150
2秒前
Ava应助科研通管家采纳,获得10
2秒前
3秒前
Rondab应助科研通管家采纳,获得10
3秒前
Rondab应助科研通管家采纳,获得10
3秒前
Rondab应助科研通管家采纳,获得10
3秒前
Rondab应助科研通管家采纳,获得10
3秒前
Rondab应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
Singularity应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
gy发布了新的文献求助10
4秒前
李健的小迷弟应助麒麟采纳,获得10
5秒前
qyang发布了新的文献求助10
5秒前
5秒前
逢写必中发布了新的文献求助10
6秒前
6秒前
6秒前
彬琪发布了新的文献求助10
10秒前
10秒前
DongWei95完成签到,获得积分10
11秒前
pureivy22完成签到 ,获得积分10
11秒前
13秒前
Hipchengi完成签到,获得积分10
13秒前
14秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992868
求助须知:如何正确求助?哪些是违规求助? 3533665
关于积分的说明 11263418
捐赠科研通 3273432
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882931
科研通“疑难数据库(出版商)”最低求助积分说明 809629