亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Classifying chronic obstructive pulmonary disease using computed tomography imaging and 2D and 3D convolutional neural networks

卷积神经网络 冠状面 矢状面 慢性阻塞性肺病 气道 计算机科学 人工智能 三维模型 放射科 医学 模式识别(心理学) 内科学 外科
作者
Sara Rezvanjou,Amir Moslemi,S. Peterson,Wan-Cheng Tan-Hogg,Jim Hogg,Jean Bourbeau,Miranda Kirby
标识
DOI:10.1117/12.3006852
摘要

Convolutional Neural Network (CNN)-based models using Computed Tomography (CT) images classify Chronic Obstructive Pulmonary Disease (COPD) patients with high accuracy, but studies have used various different input images and it is unclear what input images are optimum, particularly in a milder COPD cohort. We propose a novel approach using 2D airway-optimized topological multi-planar reformat (airway-optimized tMPR) images as well as novel 3D fusion methods and compared the performance of these models with various established 2D/3D CNN-based methods in a population-based mild COPD cohort. Participants from the CanCOLD study were evaluated. We implemented several 2D/3D models adapted from the literature. Existing CNN-based models were trained using 2D collages of axial/coronal/sagittal slices, and colored and binary airway images. 3D models consisting of 15 axial inspiratory/expiratory slices were selected, and input and output combination methods were investigated. For the proposed models, 2D airway-optimized tMPR images were constructed using cut-surface renderings to convey shape and interior/contextual information. 3D output fusion of axial/coronal/sagittal images, as well as output fusion of the axial and 3D airway tree, were also investigated. Finally, the output fusion of 2D airway-optimized tMPR methods and 3D lungs combined method was investigated. 742 participants were used for training/validation and 309 for testing. The 2D and 3D methods adapted from the literature had accuracy ranging from 61%-72% in the mild COPD cohort. The 2D airway-optimized tMPR model achieved 73% accuracy. The proposed 3D model of combining axial/coronal/sagittal images had an accuracy of 75%. The proposed model output combining 2D colored airways and inspiratory combined 3D images, and the 3D collage of axial/coronal/sagittal images, resulted in 74% and 73% accuracy, respectively. However, the output fusion of the airway-optimized tMPR and 3D lung model of combining axial/coronal/sagittal images reached the highest accuracy of 78%. While the CNN model with 2D airway/lung-optimized images had improved performance with reduced computational resources as compared to the 3D models proposed, as well as the other published CNN-based models, the combination of this 2D method with the 3D CNN model of combining axial/coronal/sagittal images achieved the highest performance in this mild cohort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老天师一巴掌完成签到 ,获得积分10
7秒前
14秒前
螃蟹One完成签到 ,获得积分10
20秒前
开心的瘦子完成签到,获得积分10
24秒前
25秒前
32秒前
oia完成签到,获得积分10
41秒前
Raju发布了新的文献求助30
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
雪白元风完成签到 ,获得积分10
1分钟前
caca完成签到,获得积分0
1分钟前
1分钟前
1分钟前
1分钟前
ESLG完成签到 ,获得积分10
1分钟前
1分钟前
爱科研的小凡完成签到,获得积分10
1分钟前
净净发布了新的文献求助30
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
TBI发布了新的文献求助10
2分钟前
zqq完成签到,获得积分0
2分钟前
2分钟前
2分钟前
2分钟前
妩媚的夏烟完成签到,获得积分10
2分钟前
QuIT完成签到 ,获得积分10
2分钟前
2分钟前
浮游应助科研通管家采纳,获得10
3分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
3分钟前
慕青应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482272
求助须知:如何正确求助?哪些是违规求助? 4583190
关于积分的说明 14388849
捐赠科研通 4512197
什么是DOI,文献DOI怎么找? 2472722
邀请新用户注册赠送积分活动 1459016
关于科研通互助平台的介绍 1432418