亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Classifying chronic obstructive pulmonary disease using computed tomography imaging and 2D and 3D convolutional neural networks

卷积神经网络 冠状面 矢状面 慢性阻塞性肺病 气道 计算机科学 人工智能 三维模型 放射科 医学 模式识别(心理学) 内科学 外科
作者
Sara Rezvanjou,Amir Moslemi,S. Peterson,Wan-Cheng Tan-Hogg,Jim Hogg,Jean Bourbeau,Miranda Kirby
标识
DOI:10.1117/12.3006852
摘要

Convolutional Neural Network (CNN)-based models using Computed Tomography (CT) images classify Chronic Obstructive Pulmonary Disease (COPD) patients with high accuracy, but studies have used various different input images and it is unclear what input images are optimum, particularly in a milder COPD cohort. We propose a novel approach using 2D airway-optimized topological multi-planar reformat (airway-optimized tMPR) images as well as novel 3D fusion methods and compared the performance of these models with various established 2D/3D CNN-based methods in a population-based mild COPD cohort. Participants from the CanCOLD study were evaluated. We implemented several 2D/3D models adapted from the literature. Existing CNN-based models were trained using 2D collages of axial/coronal/sagittal slices, and colored and binary airway images. 3D models consisting of 15 axial inspiratory/expiratory slices were selected, and input and output combination methods were investigated. For the proposed models, 2D airway-optimized tMPR images were constructed using cut-surface renderings to convey shape and interior/contextual information. 3D output fusion of axial/coronal/sagittal images, as well as output fusion of the axial and 3D airway tree, were also investigated. Finally, the output fusion of 2D airway-optimized tMPR methods and 3D lungs combined method was investigated. 742 participants were used for training/validation and 309 for testing. The 2D and 3D methods adapted from the literature had accuracy ranging from 61%-72% in the mild COPD cohort. The 2D airway-optimized tMPR model achieved 73% accuracy. The proposed 3D model of combining axial/coronal/sagittal images had an accuracy of 75%. The proposed model output combining 2D colored airways and inspiratory combined 3D images, and the 3D collage of axial/coronal/sagittal images, resulted in 74% and 73% accuracy, respectively. However, the output fusion of the airway-optimized tMPR and 3D lung model of combining axial/coronal/sagittal images reached the highest accuracy of 78%. While the CNN model with 2D airway/lung-optimized images had improved performance with reduced computational resources as compared to the 3D models proposed, as well as the other published CNN-based models, the combination of this 2D method with the 3D CNN model of combining axial/coronal/sagittal images achieved the highest performance in this mild cohort.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
畅快甜瓜发布了新的文献求助30
18秒前
完美世界应助读书的时候采纳,获得10
25秒前
51秒前
1分钟前
传奇3应助读书的时候采纳,获得10
1分钟前
宋美美发布了新的文献求助10
1分钟前
1分钟前
Unicorn完成签到,获得积分10
1分钟前
1分钟前
SiboN完成签到,获得积分10
1分钟前
畅快甜瓜发布了新的文献求助10
1分钟前
1分钟前
宋美美完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
上官若男应助读书的时候采纳,获得10
2分钟前
焰火在完成签到,获得积分10
2分钟前
Owen应助Xuxiaojun采纳,获得10
2分钟前
Jasper应助读书的时候采纳,获得10
2分钟前
3分钟前
aming完成签到,获得积分20
3分钟前
Xuxiaojun发布了新的文献求助10
3分钟前
Owen应助读书的时候采纳,获得10
3分钟前
Xuxiaojun完成签到,获得积分20
3分钟前
田様应助潇洒的依凝采纳,获得10
3分钟前
3分钟前
乐乐应助潇洒的依凝采纳,获得10
3分钟前
畅快甜瓜发布了新的文献求助10
3分钟前
静静完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732235
求助须知:如何正确求助?哪些是违规求助? 5337592
关于积分的说明 15322064
捐赠科研通 4877886
什么是DOI,文献DOI怎么找? 2620721
邀请新用户注册赠送积分活动 1569955
关于科研通互助平台的介绍 1526556