亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Classifying chronic obstructive pulmonary disease using computed tomography imaging and 2D and 3D convolutional neural networks

卷积神经网络 冠状面 矢状面 慢性阻塞性肺病 气道 计算机科学 人工智能 三维模型 放射科 医学 模式识别(心理学) 内科学 外科
作者
Sara Rezvanjou,Amir Moslemi,S. Peterson,Wan-Cheng Tan-Hogg,Jim Hogg,Jean Bourbeau,Miranda Kirby
标识
DOI:10.1117/12.3006852
摘要

Convolutional Neural Network (CNN)-based models using Computed Tomography (CT) images classify Chronic Obstructive Pulmonary Disease (COPD) patients with high accuracy, but studies have used various different input images and it is unclear what input images are optimum, particularly in a milder COPD cohort. We propose a novel approach using 2D airway-optimized topological multi-planar reformat (airway-optimized tMPR) images as well as novel 3D fusion methods and compared the performance of these models with various established 2D/3D CNN-based methods in a population-based mild COPD cohort. Participants from the CanCOLD study were evaluated. We implemented several 2D/3D models adapted from the literature. Existing CNN-based models were trained using 2D collages of axial/coronal/sagittal slices, and colored and binary airway images. 3D models consisting of 15 axial inspiratory/expiratory slices were selected, and input and output combination methods were investigated. For the proposed models, 2D airway-optimized tMPR images were constructed using cut-surface renderings to convey shape and interior/contextual information. 3D output fusion of axial/coronal/sagittal images, as well as output fusion of the axial and 3D airway tree, were also investigated. Finally, the output fusion of 2D airway-optimized tMPR methods and 3D lungs combined method was investigated. 742 participants were used for training/validation and 309 for testing. The 2D and 3D methods adapted from the literature had accuracy ranging from 61%-72% in the mild COPD cohort. The 2D airway-optimized tMPR model achieved 73% accuracy. The proposed 3D model of combining axial/coronal/sagittal images had an accuracy of 75%. The proposed model output combining 2D colored airways and inspiratory combined 3D images, and the 3D collage of axial/coronal/sagittal images, resulted in 74% and 73% accuracy, respectively. However, the output fusion of the airway-optimized tMPR and 3D lung model of combining axial/coronal/sagittal images reached the highest accuracy of 78%. While the CNN model with 2D airway/lung-optimized images had improved performance with reduced computational resources as compared to the 3D models proposed, as well as the other published CNN-based models, the combination of this 2D method with the 3D CNN model of combining axial/coronal/sagittal images achieved the highest performance in this mild cohort.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
大晨发布了新的文献求助10
8秒前
lili发布了新的文献求助10
8秒前
14秒前
lili完成签到,获得积分20
29秒前
cc完成签到,获得积分10
31秒前
1分钟前
海绵宝宝完成签到 ,获得积分10
1分钟前
Jasper应助阳光的星月采纳,获得10
1分钟前
TXZ06完成签到,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
打打应助朴素海亦采纳,获得10
2分钟前
方汀应助朴素海亦采纳,获得10
2分钟前
3分钟前
dd完成签到,获得积分10
3分钟前
3分钟前
开朗大雁完成签到 ,获得积分10
3分钟前
香蕉觅云应助科研通管家采纳,获得10
3分钟前
荷兰香猪完成签到,获得积分10
4分钟前
4分钟前
4分钟前
阳光的星月完成签到,获得积分10
4分钟前
研友_8RyzBZ完成签到,获得积分20
4分钟前
4分钟前
4分钟前
huahuaaixuexi完成签到,获得积分10
4分钟前
4分钟前
情怀应助成成鹅了采纳,获得10
4分钟前
苗龙伟完成签到 ,获得积分10
4分钟前
dd发布了新的文献求助200
5分钟前
852应助成成鹅了采纳,获得30
5分钟前
林妹妹完成签到 ,获得积分10
5分钟前
zsmj23完成签到 ,获得积分0
5分钟前
5分钟前
冷酷的如松完成签到,获得积分10
5分钟前
5分钟前
成成鹅了发布了新的文献求助10
5分钟前
5分钟前
5分钟前
丘比特应助科研通管家采纳,获得30
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634903
求助须知:如何正确求助?哪些是违规求助? 4734139
关于积分的说明 14989445
捐赠科研通 4792634
什么是DOI,文献DOI怎么找? 2559723
邀请新用户注册赠送积分活动 1520035
关于科研通互助平台的介绍 1480107