Classifying chronic obstructive pulmonary disease using computed tomography imaging and 2D and 3D convolutional neural networks

卷积神经网络 冠状面 矢状面 慢性阻塞性肺病 气道 计算机科学 人工智能 三维模型 放射科 医学 模式识别(心理学) 内科学 外科
作者
Sara Rezvanjou,Amir Moslemi,S. Peterson,Wan-Cheng Tan-Hogg,Jim Hogg,Jean Bourbeau,Miranda Kirby
标识
DOI:10.1117/12.3006852
摘要

Convolutional Neural Network (CNN)-based models using Computed Tomography (CT) images classify Chronic Obstructive Pulmonary Disease (COPD) patients with high accuracy, but studies have used various different input images and it is unclear what input images are optimum, particularly in a milder COPD cohort. We propose a novel approach using 2D airway-optimized topological multi-planar reformat (airway-optimized tMPR) images as well as novel 3D fusion methods and compared the performance of these models with various established 2D/3D CNN-based methods in a population-based mild COPD cohort. Participants from the CanCOLD study were evaluated. We implemented several 2D/3D models adapted from the literature. Existing CNN-based models were trained using 2D collages of axial/coronal/sagittal slices, and colored and binary airway images. 3D models consisting of 15 axial inspiratory/expiratory slices were selected, and input and output combination methods were investigated. For the proposed models, 2D airway-optimized tMPR images were constructed using cut-surface renderings to convey shape and interior/contextual information. 3D output fusion of axial/coronal/sagittal images, as well as output fusion of the axial and 3D airway tree, were also investigated. Finally, the output fusion of 2D airway-optimized tMPR methods and 3D lungs combined method was investigated. 742 participants were used for training/validation and 309 for testing. The 2D and 3D methods adapted from the literature had accuracy ranging from 61%-72% in the mild COPD cohort. The 2D airway-optimized tMPR model achieved 73% accuracy. The proposed 3D model of combining axial/coronal/sagittal images had an accuracy of 75%. The proposed model output combining 2D colored airways and inspiratory combined 3D images, and the 3D collage of axial/coronal/sagittal images, resulted in 74% and 73% accuracy, respectively. However, the output fusion of the airway-optimized tMPR and 3D lung model of combining axial/coronal/sagittal images reached the highest accuracy of 78%. While the CNN model with 2D airway/lung-optimized images had improved performance with reduced computational resources as compared to the 3D models proposed, as well as the other published CNN-based models, the combination of this 2D method with the 3D CNN model of combining axial/coronal/sagittal images achieved the highest performance in this mild cohort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gzslwddhjx完成签到,获得积分10
1秒前
自信的德天完成签到,获得积分10
4秒前
过丫丫完成签到,获得积分10
4秒前
大模型应助pitto采纳,获得10
4秒前
flylmy2008发布了新的文献求助10
5秒前
6秒前
今后应助sunstar采纳,获得30
6秒前
寒冷荧荧完成签到,获得积分10
8秒前
Condor完成签到,获得积分10
8秒前
9秒前
田様应助七仔采纳,获得150
9秒前
10秒前
llyy487发布了新的文献求助10
10秒前
WX发布了新的文献求助10
10秒前
路过蜻蜓完成签到,获得积分10
10秒前
Hello应助老吴采纳,获得10
11秒前
Ode发布了新的文献求助10
11秒前
11秒前
jenningseastera应助jjj采纳,获得10
12秒前
张北海应助aaaa采纳,获得20
13秒前
13秒前
14秒前
15秒前
无痕发布了新的文献求助10
16秒前
17秒前
17秒前
甘博发布了新的文献求助10
17秒前
子车半烟完成签到,获得积分10
18秒前
忆枫发布了新的文献求助10
18秒前
汉堡包应助Silver采纳,获得30
19秒前
19秒前
永刚完成签到,获得积分10
20秒前
haru发布了新的文献求助10
20秒前
21秒前
22秒前
欧皇发布了新的文献求助10
23秒前
pluto应助忆枫采纳,获得10
24秒前
24秒前
sunstar发布了新的文献求助30
24秒前
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992117
求助须知:如何正确求助?哪些是违规求助? 3533123
关于积分的说明 11261129
捐赠科研通 3272496
什么是DOI,文献DOI怎么找? 1805837
邀请新用户注册赠送积分活动 882717
科研通“疑难数据库(出版商)”最低求助积分说明 809425