Stock portfolio optimization for risk-averse investors: A novel hybrid possibilistic and flexible robust approach

投资组合优化 文件夹 计算机科学 稳健优化 库存(枪支) 计量经济学 数学优化 金融经济学 经济 数学 机械工程 工程类
作者
Elahe Sadat Savaei,Esmaeil Alinezhad,Mahmood Eghtesadifard
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:250: 123754-123754
标识
DOI:10.1016/j.eswa.2024.123754
摘要

This study proposes stock portfolio optimization models for risk-averse investors under uncertain conditions. To accomplish this, the study measures risk based on the conditional drawdown-at-risk (CDaR) measure, which can prevent major declines in investment as a conservative investment strategy. Given the uncertain character of the input parameters of the problem, the study first proposes a hybrid possibilistic and flexible model by considering the CDaR measure (CDaR-HPFM) to handle uncertainty. Furthermore, to offer more robust outcomes, the study constructs a hybrid possibilistic and flexible robust model by considering the CDaR measure (CDaR-HPFRM), in the form of a non-linear mathematical programming problem. The CDaR-HPFRM can process the robustness of output decisions while dealing with uncertain parameters. The real stock exchange data of 100 companies registered on the Tehran Stock Exchange are investigated to validate the functionality of the proposed models. The results reveal that, when various penalty costs are factored in, the CDaR-HPFRM yields more efficient and more robust results than the CDaR-HPFM. Comparative results also indicate that the proposed models almost always outperform existing methods, in terms of both CDaR and rate of return measures. Proposed models can be used for all types of stock market investments (including micro-investing and investment funds) and can handle portfolio optimization and selection processes in project-based organizations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yx应助陈强采纳,获得30
刚刚
sokach发布了新的文献求助10
2秒前
缓慢荔枝发布了新的文献求助10
2秒前
123发布了新的文献求助10
3秒前
天御雪完成签到,获得积分10
3秒前
gen关闭了gen文献求助
3秒前
3秒前
科研通AI5应助oldlee采纳,获得10
4秒前
4秒前
MADKAI发布了新的文献求助10
4秒前
哈哈悦完成签到,获得积分10
4秒前
赘婿应助duoduozs采纳,获得10
4秒前
kai完成签到,获得积分10
5秒前
5秒前
情怀应助xhy采纳,获得10
5秒前
整齐的灭绝完成签到 ,获得积分10
6秒前
充电宝应助船舵采纳,获得10
6秒前
lqphysics完成签到,获得积分10
6秒前
6秒前
小小完成签到 ,获得积分10
7秒前
320me666完成签到,获得积分10
8秒前
8秒前
velpro发布了新的文献求助10
9秒前
科研通AI5应助masu采纳,获得10
9秒前
小狸跟你拼啦完成签到,获得积分10
9秒前
寂寞的灵发布了新的文献求助10
9秒前
10秒前
honey完成签到,获得积分10
10秒前
白宝宝北北白应助eee采纳,获得10
10秒前
gcc应助HZW采纳,获得20
11秒前
11秒前
完美世界应助Hu111采纳,获得10
12秒前
khaosyi完成签到 ,获得积分10
13秒前
哇哈哈完成签到,获得积分10
14秒前
14秒前
buno应助啦啦采纳,获得10
15秒前
Mike完成签到,获得积分10
15秒前
15秒前
顾矜应助chen采纳,获得10
16秒前
科研通AI5应助小王采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672