生物
基因
抗坏血酸
甜瓜
遗传学
基因表达
生物化学
系统发育树
基因家族
食品科学
园艺
作者
Tiantian Yang,Sikandar Amanullah,Shenglong Li,Peng Gao,Junyu Bai,Chang Li,Jie Ma,Feishi Luan,Xiaogang Wang
出处
期刊:Antioxidants
[MDPI AG]
日期:2024-03-26
卷期号:13 (4): 397-397
标识
DOI:10.3390/antiox13040397
摘要
Ascorbic acid (AsA), also known as vitamin C, is a well-known antioxidant found in living entities that plays an essential role in growth and development, as well as in defensive mechanisms. GDP-L-galactose phosphorylase (GGP) is a candidate gene regulating AsA biosynthesis at the translational and transcriptional levels in plants. In the current study, we conducted genome-wide bioinformatic analysis and pinpointed a single AsA synthesis rate-limiting enzyme gene in melon (CmGGP1). The protein prediction analysis depicted that the CmGGP1 protein does not have a signaling peptide or transmembrane structure and mainly functions in the chloroplast or nucleus. The constructed phylogenetic tree analysis in multispecies showed that the CmGGP1 protein has a highly conserved motif in cucurbit crops. The structural variation analysis of the CmGGP1 gene in different domesticated melon germplasms showed a single non-synonymous type-base mutation and indicated that this gene was selected by domestication during evolution. Wild-type (WT) and landrace (LDR) germplasms of melon depicted close relationships to each other, and improved-type (IMP) varieties showed modern domestication selection. The endogenous quantification of AsA content in both the young and old leaves of nine melon varieties exhibited the major differentiations for AsA synthesis and metabolism. The real-time quantitative polymerase chain reaction (qRT-PCR) analysis of gene co-expression showed that AsA biosynthesis in leaves was greater than AsA metabolic consumption, and four putative interactive genes (MELO3C025552.2, MELO3C007440.2, MELO3C023324.2, and MELO3C018576.2) associated with the CmGGP1 gene were revealed. Meanwhile, the CmGGP1 gene expression pattern was noticed to be up-regulated to varying degrees in different acclimated melons. We believe that the obtained results would provide useful insights for an in-depth genetic understanding of the AsA biosynthesis mechanism, aimed at the development of improving crop plants for melon.
科研通智能强力驱动
Strongly Powered by AbleSci AI