Exploring One-Shot Semi-supervised Federated Learning with Pre-trained Diffusion Models

弹丸 计算机科学 扩散 人工智能 机器学习 材料科学 物理 冶金 热力学
作者
Mingzhao Yang,Shangchao Su,Bin Li,Xiangyang Xue
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (15): 16325-16333 被引量:5
标识
DOI:10.1609/aaai.v38i15.29568
摘要

Recently, semi-supervised federated learning (semi-FL) has been proposed to handle the commonly seen real-world scenarios with labeled data on the server and unlabeled data on the clients. However, existing methods face several challenges such as communication costs, data heterogeneity, and training pressure on client devices. To address these challenges, we introduce the powerful diffusion models (DM) into semi-FL and propose FedDISC, a Federated Diffusion-Inspired Semi-supervised Co-training method. Specifically, we first extract prototypes of the labeled server data and use these prototypes to predict pseudo-labels of the client data. For each category, we compute the cluster centroids and domain-specific representations to signify the semantic and stylistic information of their distributions. After adding noise, these representations are sent back to the server, which uses the pre-trained DM to generate synthetic datasets complying with the client distributions and train a global model on it. With the assistance of vast knowledge within DM, the synthetic datasets have comparable quality and diversity to the client images, subsequently enabling the training of global models that achieve performance equivalent to or even surpassing the ceiling of supervised centralized training. FedDISC works within one communication round, does not require any local training, and involves very minimal information uploading, greatly enhancing its practicality. Extensive experiments on three large-scale datasets demonstrate that FedDISC effectively addresses the semi-FL problem on non-IID clients and outperforms the compared SOTA methods. Sufficient visualization experiments also illustrate that the synthetic dataset generated by FedDISC exhibits comparable diversity and quality to the original client dataset, with a neglectable possibility of leaking privacy-sensitive information of the clients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈丰滢完成签到,获得积分10
1秒前
李健的小迷弟应助至幸采纳,获得10
1秒前
CodeCraft应助良月二十三采纳,获得10
1秒前
Silvia关注了科研通微信公众号
1秒前
叁月二发布了新的文献求助10
2秒前
2秒前
aron发布了新的文献求助10
2秒前
洪星发布了新的文献求助10
2秒前
2秒前
善学以致用应助林小乌龟采纳,获得10
2秒前
中中中完成签到,获得积分10
2秒前
3秒前
Ran完成签到,获得积分20
3秒前
小兰花完成签到,获得积分10
3秒前
彭于晏应助chenxx采纳,获得10
3秒前
3秒前
4秒前
4秒前
4秒前
Nikko完成签到,获得积分10
5秒前
5秒前
zzzkyt完成签到,获得积分10
5秒前
5秒前
cc完成签到,获得积分10
5秒前
铁臂阿童木完成签到,获得积分10
5秒前
不知归期的故人关注了科研通微信公众号
5秒前
yuan1226完成签到 ,获得积分10
6秒前
中中中发布了新的文献求助10
6秒前
youy完成签到 ,获得积分10
6秒前
6秒前
zzzkyt发布了新的文献求助10
8秒前
Demon发布了新的文献求助10
9秒前
an完成签到,获得积分10
9秒前
思君会于斑斓完成签到,获得积分10
9秒前
hutu发布了新的文献求助10
9秒前
酷波er应助清新的含羞草采纳,获得10
10秒前
别吃小米粥完成签到,获得积分10
10秒前
彬墩墩发布了新的文献求助10
10秒前
xr发布了新的文献求助10
10秒前
拿捏陕科大完成签到,获得积分10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009325
求助须知:如何正确求助?哪些是违规求助? 3549162
关于积分的说明 11301105
捐赠科研通 3283572
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886205
科研通“疑难数据库(出版商)”最低求助积分说明 811301