Exploring One-Shot Semi-supervised Federated Learning with Pre-trained Diffusion Models

弹丸 计算机科学 扩散 人工智能 机器学习 材料科学 热力学 物理 冶金
作者
Mingzhao Yang,Shangchao Su,Bin Li,Xiangyang Xue
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (15): 16325-16333 被引量:5
标识
DOI:10.1609/aaai.v38i15.29568
摘要

Recently, semi-supervised federated learning (semi-FL) has been proposed to handle the commonly seen real-world scenarios with labeled data on the server and unlabeled data on the clients. However, existing methods face several challenges such as communication costs, data heterogeneity, and training pressure on client devices. To address these challenges, we introduce the powerful diffusion models (DM) into semi-FL and propose FedDISC, a Federated Diffusion-Inspired Semi-supervised Co-training method. Specifically, we first extract prototypes of the labeled server data and use these prototypes to predict pseudo-labels of the client data. For each category, we compute the cluster centroids and domain-specific representations to signify the semantic and stylistic information of their distributions. After adding noise, these representations are sent back to the server, which uses the pre-trained DM to generate synthetic datasets complying with the client distributions and train a global model on it. With the assistance of vast knowledge within DM, the synthetic datasets have comparable quality and diversity to the client images, subsequently enabling the training of global models that achieve performance equivalent to or even surpassing the ceiling of supervised centralized training. FedDISC works within one communication round, does not require any local training, and involves very minimal information uploading, greatly enhancing its practicality. Extensive experiments on three large-scale datasets demonstrate that FedDISC effectively addresses the semi-FL problem on non-IID clients and outperforms the compared SOTA methods. Sufficient visualization experiments also illustrate that the synthetic dataset generated by FedDISC exhibits comparable diversity and quality to the original client dataset, with a neglectable possibility of leaking privacy-sensitive information of the clients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蹦蹦发布了新的文献求助10
2秒前
华仔应助个性半山采纳,获得10
3秒前
杳鸢应助烂漫的采珊采纳,获得10
4秒前
初晴发布了新的文献求助10
4秒前
5秒前
Jasper应助heiztcasino采纳,获得10
6秒前
10秒前
11秒前
直率铃铛完成签到,获得积分20
11秒前
11秒前
慕青应助heiztcasino采纳,获得10
13秒前
13秒前
朴实老黑完成签到 ,获得积分10
14秒前
ZACK完成签到 ,获得积分10
15秒前
完美世界应助科研小狗采纳,获得10
15秒前
蒹葭发布了新的文献求助10
16秒前
初晴完成签到,获得积分10
17秒前
窗子以外发布了新的文献求助10
18秒前
19秒前
19秒前
Sylvia完成签到,获得积分10
20秒前
谭凯文发布了新的文献求助10
22秒前
我是老大应助heiztcasino采纳,获得10
23秒前
想看不眠日记完成签到,获得积分10
23秒前
24秒前
24秒前
24秒前
24秒前
25秒前
跋扈完成签到,获得积分10
25秒前
下雨这天发布了新的文献求助10
26秒前
科研小狗发布了新的文献求助10
28秒前
orixero应助wyt采纳,获得10
28秒前
俊逸鸣凤完成签到,获得积分20
28秒前
个性半山发布了新的文献求助10
29秒前
乐乐应助heiztcasino采纳,获得10
31秒前
机灵的冰淇淋完成签到 ,获得积分10
31秒前
bkagyin应助哈哈哈采纳,获得30
31秒前
33秒前
35秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3293303
求助须知:如何正确求助?哪些是违规求助? 2929421
关于积分的说明 8441734
捐赠科研通 2601557
什么是DOI,文献DOI怎么找? 1419967
科研通“疑难数据库(出版商)”最低求助积分说明 660479
邀请新用户注册赠送积分活动 643063