Managing Replenishment and Clearance of Perishables: Last-In, First-Out (LIFO) Issuing Policy and Age-Sensitive Demand

先进先出和后进先出会计 按需 业务 运营管理 间隙 经济 计算机科学 商业 医学 FIFO(计算和电子) 计算机硬件 泌尿科
作者
Achal Goyal,Amar Sapra
出处
期刊:Production and Operations Management [Wiley]
卷期号:33 (4): 1031-1052 被引量:1
标识
DOI:10.1177/10591478241238970
摘要

In supermarkets, customers choose the unit(s) they purchase, which leads to inventory being sold in a last-in, first-out (LIFO) order for perishable products. Furthermore, for such products, the demand for inventory may depend on its age since customers may choose to walk away if the freshest available inventory is too old for them. Despite the widespread occurrence of LIFO-based inventory systems, few studies have analyzed them. In this study, we contribute by developing insights on joint replenishment and clearance policy for a perishable product with a general, finite lifetime using a periodic review model such that the inventory is sold in a LIFO order and demand is age-dependent. The model seeks to optimize two decisions every period: how much of fresh inventory to order and how much of existing inventory to clear. A key objective of the model is to understand the effect of age-dependence of demand on the optimal replenishment and clearance policy. We find that the optimal clearance policy for all but the oldest inventory is a multiindex policy such that between any pair of adjacent indexes, either no inventory is cleared or all the inventory is cleared till the lower index. For the oldest inventory, we show that the optimal policy may have multiple forms depending on how sensitive demand is to inventory’s age. This is a notable result in inventory theory since parameters usually affect only the policy value(s) and not the policy structure. Since the optimal policy has a complex structure in general, which makes it difficult to compute, we develop an efficient heuristic to compute the replenishment and clearance quantities. The heuristic underperforms the optimal policy by [Formula: see text]0.92% on average.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
666发布了新的文献求助20
刚刚
刚刚
Hello应助阿基米德采纳,获得10
1秒前
岩土HB发布了新的文献求助30
2秒前
yu完成签到,获得积分10
2秒前
学渣一枚发布了新的文献求助10
3秒前
CodeCraft应助tingting采纳,获得10
4秒前
wodel完成签到,获得积分10
4秒前
wxy发布了新的文献求助10
6秒前
时笙发布了新的文献求助20
6秒前
杜昂完成签到,获得积分10
6秒前
8秒前
kylin完成签到,获得积分10
9秒前
10秒前
小蘑菇应助量子星尘采纳,获得10
10秒前
10秒前
10秒前
脑洞疼应助量子星尘采纳,获得10
11秒前
Rondab应助幸福大白采纳,获得30
11秒前
思源应助量子星尘采纳,获得10
12秒前
12秒前
阿基米德发布了新的文献求助10
13秒前
13秒前
充电宝应助量子星尘采纳,获得10
14秒前
YUMI发布了新的文献求助10
14秒前
汪海洋完成签到,获得积分10
15秒前
安与和发布了新的文献求助10
15秒前
haidan发布了新的文献求助10
15秒前
16秒前
dxdy发布了新的文献求助10
16秒前
Lucas应助清秀鑫鹏采纳,获得10
17秒前
19秒前
19秒前
19秒前
Liolsy发布了新的文献求助10
20秒前
Xamsiya发布了新的文献求助10
21秒前
漫奏曲完成签到,获得积分10
23秒前
luoshikun发布了新的文献求助10
23秒前
23秒前
小二郎应助Billy采纳,获得10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989510
求助须知:如何正确求助?哪些是违规求助? 3531756
关于积分的说明 11254536
捐赠科研通 3270255
什么是DOI,文献DOI怎么找? 1804947
邀请新用户注册赠送积分活动 882113
科研通“疑难数据库(出版商)”最低求助积分说明 809176