Stack-AAgP: Computational prediction and interpretation of anti-angiogenic peptides using a meta-learning framework

堆栈(抽象数据类型) 口译(哲学) 计算机科学 人工智能 元学习(计算机科学) 机器学习 程序设计语言 工程类 系统工程 任务(项目管理)
作者
Saima Gaffar,Hilal Tayara,Kil To Chong
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:174: 108438-108438 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.108438
摘要

Angiogenesis plays a vital role in the pathogenesis of several human diseases, particularly in the case of solid tumors. In the realm of cancer treatment, recent investigations into peptides with anti-angiogenic properties have yielded encouraging outcomes, thereby creating a hopeful therapeutic avenue for the treatment of cancer. Therefore, correctly identifying the anti-angiogenic peptides is extremely important in comprehending their biophysical and biochemical traits, laying the groundwork for uncovering novel drugs to combat cancer.In this work, we present a novel ensemble-learning-based model, Stack-AAgP, specifically designed for the accurate identification and interpretation of anti-angiogenic peptides (AAPs). Initially, a feature representation approach is employed, generating 24 baseline models through six machine learning algorithms (random forest [RF], extra tree classifier [ETC], extreme gradient boosting [XGB], light gradient boosting machine [LGBM], CatBoost, and SVM) and four feature encodings (pseudo-amino acid composition [PAAC], amphiphilic pseudo-amino acid composition [APAAC], composition of k-spaced amino acid pairs [CKSAAP], and quasi-sequence-order [QSOrder]). Subsequently, the output (predicted probabilities) from 24 baseline models was inputted into the same six machine-learning classifiers to generate their respective meta-classifiers. Finally, the meta-classifiers were stacked together using the ensemble-learning framework to construct the final predictive model.Findings from the independent test demonstrate that Stack-AAgP outperforms the state-of-the-art methods by a considerable margin. Systematic experiments were conducted to assess the influence of hyperparameters on the proposed model. Our model, Stack-AAgP, was evaluated on the independent NT15 dataset, revealing superiority over existing predictors with an accuracy improvement ranging from 5% to 7.5% and an increase in Matthews Correlation Coefficient (MCC) from 7.2% to 12.2%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzr真真97完成签到,获得积分10
1秒前
YOLO发布了新的文献求助10
1秒前
1秒前
2秒前
劉浏琉完成签到,获得积分10
2秒前
搞怪的唇膏完成签到,获得积分10
2秒前
何大青完成签到,获得积分10
2秒前
ZY完成签到,获得积分10
2秒前
小鹿完成签到,获得积分10
3秒前
等天黑完成签到,获得积分10
3秒前
xiaofeiyang1122完成签到,获得积分10
3秒前
songshuyu完成签到,获得积分10
3秒前
和谐代柔发布了新的文献求助10
3秒前
3秒前
云起龙都完成签到,获得积分10
4秒前
A阿澍完成签到,获得积分10
4秒前
5秒前
Wendy完成签到 ,获得积分10
5秒前
5秒前
5秒前
5秒前
atonnng发布了新的文献求助10
5秒前
撒玉完成签到,获得积分10
5秒前
qyj完成签到,获得积分10
6秒前
梓越完成签到,获得积分10
6秒前
6秒前
冷艳的鞯完成签到,获得积分10
7秒前
国泰民安完成签到,获得积分10
7秒前
yyy发布了新的文献求助10
7秒前
7秒前
7秒前
shadow完成签到,获得积分10
7秒前
8秒前
宇老师发布了新的文献求助10
8秒前
PHW完成签到,获得积分10
8秒前
like411完成签到,获得积分10
8秒前
小马甲应助XPH采纳,获得10
8秒前
nanfeng完成签到 ,获得积分10
8秒前
小录完成签到 ,获得积分10
8秒前
May完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402319
求助须知:如何正确求助?哪些是违规求助? 4520881
关于积分的说明 14082899
捐赠科研通 4434954
什么是DOI,文献DOI怎么找? 2434495
邀请新用户注册赠送积分活动 1426678
关于科研通互助平台的介绍 1405415