Stack-AAgP: Computational prediction and interpretation of anti-angiogenic peptides using a meta-learning framework

堆栈(抽象数据类型) 口译(哲学) 计算机科学 人工智能 元学习(计算机科学) 机器学习 程序设计语言 工程类 系统工程 任务(项目管理)
作者
Saima Gaffar,Hilal Tayara,Kil To Chong
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:174: 108438-108438 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.108438
摘要

Angiogenesis plays a vital role in the pathogenesis of several human diseases, particularly in the case of solid tumors. In the realm of cancer treatment, recent investigations into peptides with anti-angiogenic properties have yielded encouraging outcomes, thereby creating a hopeful therapeutic avenue for the treatment of cancer. Therefore, correctly identifying the anti-angiogenic peptides is extremely important in comprehending their biophysical and biochemical traits, laying the groundwork for uncovering novel drugs to combat cancer.In this work, we present a novel ensemble-learning-based model, Stack-AAgP, specifically designed for the accurate identification and interpretation of anti-angiogenic peptides (AAPs). Initially, a feature representation approach is employed, generating 24 baseline models through six machine learning algorithms (random forest [RF], extra tree classifier [ETC], extreme gradient boosting [XGB], light gradient boosting machine [LGBM], CatBoost, and SVM) and four feature encodings (pseudo-amino acid composition [PAAC], amphiphilic pseudo-amino acid composition [APAAC], composition of k-spaced amino acid pairs [CKSAAP], and quasi-sequence-order [QSOrder]). Subsequently, the output (predicted probabilities) from 24 baseline models was inputted into the same six machine-learning classifiers to generate their respective meta-classifiers. Finally, the meta-classifiers were stacked together using the ensemble-learning framework to construct the final predictive model.Findings from the independent test demonstrate that Stack-AAgP outperforms the state-of-the-art methods by a considerable margin. Systematic experiments were conducted to assess the influence of hyperparameters on the proposed model. Our model, Stack-AAgP, was evaluated on the independent NT15 dataset, revealing superiority over existing predictors with an accuracy improvement ranging from 5% to 7.5% and an increase in Matthews Correlation Coefficient (MCC) from 7.2% to 12.2%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
无私念瑶发布了新的文献求助10
2秒前
干净山柳发布了新的文献求助10
2秒前
贺华发布了新的文献求助10
2秒前
2秒前
wanci应助猪变成了蛾子采纳,获得10
2秒前
2秒前
Yasing发布了新的文献求助10
2秒前
jenningseastera应助Liang采纳,获得50
3秒前
一颗星完成签到,获得积分10
3秒前
bjyx完成签到,获得积分10
3秒前
棋士应助别偷我增肌粉采纳,获得10
3秒前
李爱国应助畅快奎采纳,获得10
3秒前
king完成签到 ,获得积分10
3秒前
英俊的铭应助尉迟衣采纳,获得10
3秒前
4秒前
鲤鱼凌波完成签到,获得积分10
4秒前
5秒前
6秒前
芳蔼完成签到 ,获得积分20
6秒前
脑洞疼应助zsg采纳,获得10
6秒前
Utopia完成签到,获得积分10
7秒前
干净山柳完成签到,获得积分10
7秒前
杨辅政发布了新的文献求助10
8秒前
徐家培完成签到,获得积分10
8秒前
8秒前
8秒前
JamesPei应助欢喜的之瑶采纳,获得10
9秒前
void科学家完成签到,获得积分10
9秒前
sdl发布了新的文献求助10
9秒前
Possession完成签到,获得积分10
9秒前
10秒前
猪变成了蛾子完成签到,获得积分10
10秒前
GuangChe发布了新的文献求助10
10秒前
11秒前
11秒前
心想事陈完成签到,获得积分10
12秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950510
求助须知:如何正确求助?哪些是违规求助? 3495946
关于积分的说明 11079852
捐赠科研通 3226328
什么是DOI,文献DOI怎么找? 1783799
邀请新用户注册赠送积分活动 867892
科研通“疑难数据库(出版商)”最低求助积分说明 800942