Stack-AAgP: Computational prediction and interpretation of anti-angiogenic peptides using a meta-learning framework

堆栈(抽象数据类型) 口译(哲学) 计算机科学 人工智能 元学习(计算机科学) 机器学习 程序设计语言 工程类 系统工程 任务(项目管理)
作者
Saima Gaffar,Hilal Tayara,Kil To Chong
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:174: 108438-108438 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.108438
摘要

Angiogenesis plays a vital role in the pathogenesis of several human diseases, particularly in the case of solid tumors. In the realm of cancer treatment, recent investigations into peptides with anti-angiogenic properties have yielded encouraging outcomes, thereby creating a hopeful therapeutic avenue for the treatment of cancer. Therefore, correctly identifying the anti-angiogenic peptides is extremely important in comprehending their biophysical and biochemical traits, laying the groundwork for uncovering novel drugs to combat cancer.In this work, we present a novel ensemble-learning-based model, Stack-AAgP, specifically designed for the accurate identification and interpretation of anti-angiogenic peptides (AAPs). Initially, a feature representation approach is employed, generating 24 baseline models through six machine learning algorithms (random forest [RF], extra tree classifier [ETC], extreme gradient boosting [XGB], light gradient boosting machine [LGBM], CatBoost, and SVM) and four feature encodings (pseudo-amino acid composition [PAAC], amphiphilic pseudo-amino acid composition [APAAC], composition of k-spaced amino acid pairs [CKSAAP], and quasi-sequence-order [QSOrder]). Subsequently, the output (predicted probabilities) from 24 baseline models was inputted into the same six machine-learning classifiers to generate their respective meta-classifiers. Finally, the meta-classifiers were stacked together using the ensemble-learning framework to construct the final predictive model.Findings from the independent test demonstrate that Stack-AAgP outperforms the state-of-the-art methods by a considerable margin. Systematic experiments were conducted to assess the influence of hyperparameters on the proposed model. Our model, Stack-AAgP, was evaluated on the independent NT15 dataset, revealing superiority over existing predictors with an accuracy improvement ranging from 5% to 7.5% and an increase in Matthews Correlation Coefficient (MCC) from 7.2% to 12.2%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
abcd_1067完成签到,获得积分10
2秒前
holi完成签到 ,获得积分10
2秒前
热心的冬菱完成签到 ,获得积分10
3秒前
Persevere完成签到,获得积分10
4秒前
犹豫战斗机完成签到,获得积分10
4秒前
挽风完成签到 ,获得积分10
4秒前
科研民工完成签到,获得积分10
4秒前
FWCY发布了新的文献求助80
4秒前
4秒前
杰行天下发布了新的文献求助10
6秒前
一111完成签到,获得积分20
6秒前
俞孤风完成签到,获得积分10
6秒前
hkh完成签到,获得积分10
8秒前
科研民工发布了新的文献求助10
9秒前
BSDL完成签到,获得积分20
12秒前
清眸发布了新的文献求助10
12秒前
星如繁花完成签到,获得积分10
15秒前
lydiaabc完成签到,获得积分10
15秒前
旋转门发布了新的文献求助30
15秒前
Purplesky完成签到,获得积分10
17秒前
莫忙完成签到 ,获得积分10
17秒前
18秒前
轻狂书生完成签到,获得积分10
18秒前
Aimee完成签到 ,获得积分10
19秒前
小蘑菇应助董菲音采纳,获得10
19秒前
粒粒完成签到,获得积分20
20秒前
树上香蕉果完成签到,获得积分10
21秒前
奋斗蚂蚁完成签到 ,获得积分10
21秒前
清秀凡霜完成签到,获得积分10
21秒前
ming发布了新的文献求助20
22秒前
俞安珊完成签到,获得积分10
22秒前
闻巷雨完成签到 ,获得积分10
24秒前
阿龙完成签到,获得积分10
24秒前
丘比特应助猫小鱼采纳,获得10
24秒前
蒲泓州完成签到,获得积分10
24秒前
小蘑菇应助傅家庆采纳,获得10
25秒前
sdfwsdfsd完成签到,获得积分10
27秒前
dcx完成签到 ,获得积分10
28秒前
沉静野狼完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256478
求助须知:如何正确求助?哪些是违规求助? 4418730
关于积分的说明 13753082
捐赠科研通 4291913
什么是DOI,文献DOI怎么找? 2355182
邀请新用户注册赠送积分活动 1351622
关于科研通互助平台的介绍 1312330