Stack-AAgP: Computational prediction and interpretation of anti-angiogenic peptides using a meta-learning framework

堆栈(抽象数据类型) 口译(哲学) 计算机科学 人工智能 元学习(计算机科学) 机器学习 程序设计语言 工程类 系统工程 任务(项目管理)
作者
Saima Gaffar,Hilal Tayara,Kil To Chong
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:174: 108438-108438 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.108438
摘要

Angiogenesis plays a vital role in the pathogenesis of several human diseases, particularly in the case of solid tumors. In the realm of cancer treatment, recent investigations into peptides with anti-angiogenic properties have yielded encouraging outcomes, thereby creating a hopeful therapeutic avenue for the treatment of cancer. Therefore, correctly identifying the anti-angiogenic peptides is extremely important in comprehending their biophysical and biochemical traits, laying the groundwork for uncovering novel drugs to combat cancer.In this work, we present a novel ensemble-learning-based model, Stack-AAgP, specifically designed for the accurate identification and interpretation of anti-angiogenic peptides (AAPs). Initially, a feature representation approach is employed, generating 24 baseline models through six machine learning algorithms (random forest [RF], extra tree classifier [ETC], extreme gradient boosting [XGB], light gradient boosting machine [LGBM], CatBoost, and SVM) and four feature encodings (pseudo-amino acid composition [PAAC], amphiphilic pseudo-amino acid composition [APAAC], composition of k-spaced amino acid pairs [CKSAAP], and quasi-sequence-order [QSOrder]). Subsequently, the output (predicted probabilities) from 24 baseline models was inputted into the same six machine-learning classifiers to generate their respective meta-classifiers. Finally, the meta-classifiers were stacked together using the ensemble-learning framework to construct the final predictive model.Findings from the independent test demonstrate that Stack-AAgP outperforms the state-of-the-art methods by a considerable margin. Systematic experiments were conducted to assess the influence of hyperparameters on the proposed model. Our model, Stack-AAgP, was evaluated on the independent NT15 dataset, revealing superiority over existing predictors with an accuracy improvement ranging from 5% to 7.5% and an increase in Matthews Correlation Coefficient (MCC) from 7.2% to 12.2%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
通通通发布了新的文献求助10
2秒前
梦漓发布了新的文献求助10
2秒前
扶南发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
司念者你完成签到 ,获得积分10
5秒前
sdnihbhew发布了新的文献求助10
6秒前
研究生end发布了新的文献求助20
6秒前
深情安青应助chimsu采纳,获得10
7秒前
骑乌龟上高速完成签到,获得积分10
7秒前
ZHI完成签到,获得积分10
7秒前
ding应助Nyah采纳,获得10
7秒前
水果发布了新的文献求助10
8秒前
milkmore发布了新的文献求助10
9秒前
彭于晏应助PG采纳,获得10
9秒前
dog发布了新的文献求助10
10秒前
10秒前
10秒前
小二郎应助RRR采纳,获得10
11秒前
领导范儿应助健壮听筠采纳,获得10
11秒前
慕青应助先林采纳,获得10
12秒前
sdnihbhew完成签到,获得积分10
14秒前
14秒前
16秒前
16秒前
pluto应助水果采纳,获得10
17秒前
18秒前
19秒前
19秒前
斯文败类应助扶南采纳,获得10
19秒前
20秒前
20秒前
21秒前
21秒前
Abner发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360761
求助须知:如何正确求助?哪些是违规求助? 4491279
关于积分的说明 13981825
捐赠科研通 4393949
什么是DOI,文献DOI怎么找? 2413668
邀请新用户注册赠送积分活动 1406502
关于科研通互助平台的介绍 1381004