Stack-AAgP: Computational prediction and interpretation of anti-angiogenic peptides using a meta-learning framework

堆栈(抽象数据类型) 口译(哲学) 计算机科学 人工智能 元学习(计算机科学) 机器学习 程序设计语言 工程类 系统工程 任务(项目管理)
作者
Saima Gaffar,Hilal Tayara,Kil To Chong
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:174: 108438-108438 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.108438
摘要

Angiogenesis plays a vital role in the pathogenesis of several human diseases, particularly in the case of solid tumors. In the realm of cancer treatment, recent investigations into peptides with anti-angiogenic properties have yielded encouraging outcomes, thereby creating a hopeful therapeutic avenue for the treatment of cancer. Therefore, correctly identifying the anti-angiogenic peptides is extremely important in comprehending their biophysical and biochemical traits, laying the groundwork for uncovering novel drugs to combat cancer.In this work, we present a novel ensemble-learning-based model, Stack-AAgP, specifically designed for the accurate identification and interpretation of anti-angiogenic peptides (AAPs). Initially, a feature representation approach is employed, generating 24 baseline models through six machine learning algorithms (random forest [RF], extra tree classifier [ETC], extreme gradient boosting [XGB], light gradient boosting machine [LGBM], CatBoost, and SVM) and four feature encodings (pseudo-amino acid composition [PAAC], amphiphilic pseudo-amino acid composition [APAAC], composition of k-spaced amino acid pairs [CKSAAP], and quasi-sequence-order [QSOrder]). Subsequently, the output (predicted probabilities) from 24 baseline models was inputted into the same six machine-learning classifiers to generate their respective meta-classifiers. Finally, the meta-classifiers were stacked together using the ensemble-learning framework to construct the final predictive model.Findings from the independent test demonstrate that Stack-AAgP outperforms the state-of-the-art methods by a considerable margin. Systematic experiments were conducted to assess the influence of hyperparameters on the proposed model. Our model, Stack-AAgP, was evaluated on the independent NT15 dataset, revealing superiority over existing predictors with an accuracy improvement ranging from 5% to 7.5% and an increase in Matthews Correlation Coefficient (MCC) from 7.2% to 12.2%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
许多年以后完成签到,获得积分10
2秒前
哈比发布了新的文献求助10
2秒前
凌问晴发布了新的文献求助10
2秒前
跨进行完成签到,获得积分10
2秒前
好柿花生发布了新的文献求助10
3秒前
柯柯完成签到,获得积分20
4秒前
4秒前
跨进行发布了新的文献求助10
5秒前
雨安应助快乐爱斯米采纳,获得10
5秒前
Yapi发布了新的文献求助10
7秒前
笛子完成签到,获得积分10
7秒前
8秒前
8秒前
苏素速速发布了新的文献求助10
8秒前
凌问晴完成签到,获得积分20
8秒前
这两天天气咋样完成签到,获得积分10
8秒前
9秒前
LIUAiwei完成签到,获得积分10
10秒前
aprilvanilla应助研友_Z1x9ln采纳,获得10
10秒前
柯柯发布了新的文献求助10
10秒前
jjjuq发布了新的文献求助10
12秒前
Xin发布了新的文献求助10
12秒前
有魅力的以寒完成签到,获得积分10
12秒前
田様应助lfg采纳,获得10
12秒前
王一博士完成签到,获得积分0
13秒前
研友_VZG7GZ应助巴卡巴卡采纳,获得10
13秒前
萧水白应助楠楠采纳,获得10
14秒前
科研通AI2S应助优雅的纸鹤采纳,获得10
14秒前
飘柔应助小于爱科研采纳,获得10
15秒前
lakers完成签到,获得积分10
16秒前
香蕉觅云应助xin采纳,获得10
17秒前
华仔应助xin采纳,获得10
17秒前
17秒前
WCY发布了新的文献求助10
17秒前
AA发布了新的文献求助10
17秒前
Lee完成签到,获得积分10
17秒前
研友_Z1WrgL完成签到,获得积分10
18秒前
18秒前
小达人完成签到,获得积分10
20秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3258664
求助须知:如何正确求助?哪些是违规求助? 2900423
关于积分的说明 8310418
捐赠科研通 2569697
什么是DOI,文献DOI怎么找? 1395936
科研通“疑难数据库(出版商)”最低求助积分说明 653340
邀请新用户注册赠送积分活动 631221