已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Stack-AAgP: Computational prediction and interpretation of anti-angiogenic peptides using a meta-learning framework

堆栈(抽象数据类型) 口译(哲学) 计算机科学 人工智能 元学习(计算机科学) 机器学习 程序设计语言 工程类 系统工程 任务(项目管理)
作者
Saima Gaffar,Hilal Tayara,Kil To Chong
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:174: 108438-108438 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.108438
摘要

Angiogenesis plays a vital role in the pathogenesis of several human diseases, particularly in the case of solid tumors. In the realm of cancer treatment, recent investigations into peptides with anti-angiogenic properties have yielded encouraging outcomes, thereby creating a hopeful therapeutic avenue for the treatment of cancer. Therefore, correctly identifying the anti-angiogenic peptides is extremely important in comprehending their biophysical and biochemical traits, laying the groundwork for uncovering novel drugs to combat cancer.In this work, we present a novel ensemble-learning-based model, Stack-AAgP, specifically designed for the accurate identification and interpretation of anti-angiogenic peptides (AAPs). Initially, a feature representation approach is employed, generating 24 baseline models through six machine learning algorithms (random forest [RF], extra tree classifier [ETC], extreme gradient boosting [XGB], light gradient boosting machine [LGBM], CatBoost, and SVM) and four feature encodings (pseudo-amino acid composition [PAAC], amphiphilic pseudo-amino acid composition [APAAC], composition of k-spaced amino acid pairs [CKSAAP], and quasi-sequence-order [QSOrder]). Subsequently, the output (predicted probabilities) from 24 baseline models was inputted into the same six machine-learning classifiers to generate their respective meta-classifiers. Finally, the meta-classifiers were stacked together using the ensemble-learning framework to construct the final predictive model.Findings from the independent test demonstrate that Stack-AAgP outperforms the state-of-the-art methods by a considerable margin. Systematic experiments were conducted to assess the influence of hyperparameters on the proposed model. Our model, Stack-AAgP, was evaluated on the independent NT15 dataset, revealing superiority over existing predictors with an accuracy improvement ranging from 5% to 7.5% and an increase in Matthews Correlation Coefficient (MCC) from 7.2% to 12.2%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助昆1231231231采纳,获得10
刚刚
1秒前
罗帅帅发布了新的文献求助50
2秒前
LYZ发布了新的文献求助10
2秒前
3秒前
4秒前
Seven完成签到 ,获得积分10
4秒前
仁怡完成签到 ,获得积分10
5秒前
大贺呀完成签到,获得积分10
6秒前
ace发布了新的文献求助10
7秒前
cc完成签到,获得积分20
7秒前
汉堡包应助模拟卷采纳,获得30
8秒前
Willow完成签到,获得积分10
12秒前
12秒前
对3药不起发布了新的文献求助10
12秒前
英姑应助娜娜采纳,获得10
13秒前
ccm应助123采纳,获得30
13秒前
小马甲应助123采纳,获得30
13秒前
舒心的小刺猬完成签到,获得积分10
14秒前
14秒前
lwm不想看文献完成签到 ,获得积分10
15秒前
模拟卷完成签到,获得积分10
16秒前
17秒前
17秒前
18秒前
18秒前
顾矜应助LYZ采纳,获得10
20秒前
zrk发布了新的文献求助10
20秒前
21秒前
嘎嘣脆的桃儿完成签到,获得积分10
21秒前
Junsir发布了新的文献求助10
21秒前
乐辰发布了新的文献求助10
21秒前
Shmily完成签到,获得积分10
23秒前
24秒前
ddj发布了新的文献求助10
26秒前
执着的傲蕾完成签到 ,获得积分10
29秒前
星辰大海应助吃死你啦啦采纳,获得10
31秒前
32秒前
32秒前
32秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345203
求助须知:如何正确求助?哪些是违规求助? 4480262
关于积分的说明 13945786
捐赠科研通 4377612
什么是DOI,文献DOI怎么找? 2405382
邀请新用户注册赠送积分活动 1397974
关于科研通互助平台的介绍 1370340