Stack-AAgP: Computational prediction and interpretation of anti-angiogenic peptides using a meta-learning framework

堆栈(抽象数据类型) 口译(哲学) 计算机科学 人工智能 元学习(计算机科学) 机器学习 程序设计语言 工程类 系统工程 任务(项目管理)
作者
Saima Gaffar,Hilal Tayara,Kil To Chong
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:174: 108438-108438 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.108438
摘要

Angiogenesis plays a vital role in the pathogenesis of several human diseases, particularly in the case of solid tumors. In the realm of cancer treatment, recent investigations into peptides with anti-angiogenic properties have yielded encouraging outcomes, thereby creating a hopeful therapeutic avenue for the treatment of cancer. Therefore, correctly identifying the anti-angiogenic peptides is extremely important in comprehending their biophysical and biochemical traits, laying the groundwork for uncovering novel drugs to combat cancer.In this work, we present a novel ensemble-learning-based model, Stack-AAgP, specifically designed for the accurate identification and interpretation of anti-angiogenic peptides (AAPs). Initially, a feature representation approach is employed, generating 24 baseline models through six machine learning algorithms (random forest [RF], extra tree classifier [ETC], extreme gradient boosting [XGB], light gradient boosting machine [LGBM], CatBoost, and SVM) and four feature encodings (pseudo-amino acid composition [PAAC], amphiphilic pseudo-amino acid composition [APAAC], composition of k-spaced amino acid pairs [CKSAAP], and quasi-sequence-order [QSOrder]). Subsequently, the output (predicted probabilities) from 24 baseline models was inputted into the same six machine-learning classifiers to generate their respective meta-classifiers. Finally, the meta-classifiers were stacked together using the ensemble-learning framework to construct the final predictive model.Findings from the independent test demonstrate that Stack-AAgP outperforms the state-of-the-art methods by a considerable margin. Systematic experiments were conducted to assess the influence of hyperparameters on the proposed model. Our model, Stack-AAgP, was evaluated on the independent NT15 dataset, revealing superiority over existing predictors with an accuracy improvement ranging from 5% to 7.5% and an increase in Matthews Correlation Coefficient (MCC) from 7.2% to 12.2%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
化工牛马完成签到,获得积分10
2秒前
罗马没有马完成签到 ,获得积分10
3秒前
兹恩完成签到,获得积分10
4秒前
忧虑的静柏完成签到 ,获得积分10
4秒前
化工牛马发布了新的文献求助20
7秒前
Singularity应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
彭于彦祖应助科研通管家采纳,获得50
7秒前
7秒前
Singularity应助科研通管家采纳,获得10
7秒前
Singularity应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得50
7秒前
NexusExplorer应助科研通管家采纳,获得50
8秒前
Hello应助科研通管家采纳,获得10
8秒前
正己化人应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
8秒前
犹豫的若完成签到,获得积分10
10秒前
无敌脉冲黄桃完成签到,获得积分20
12秒前
田様应助zmy采纳,获得10
14秒前
locker完成签到 ,获得积分10
16秒前
多情赛君完成签到 ,获得积分10
17秒前
上杉绘梨衣完成签到,获得积分10
21秒前
断了的弦完成签到,获得积分10
21秒前
陶醉的小海豚完成签到,获得积分10
24秒前
asdfgjjul完成签到,获得积分10
26秒前
活泼红牛完成签到,获得积分10
27秒前
WangJL完成签到 ,获得积分10
29秒前
31秒前
一一完成签到,获得积分10
32秒前
liujianxin发布了新的文献求助10
32秒前
zmy发布了新的文献求助10
35秒前
小二郎应助crabbbb68采纳,获得10
35秒前
mzhmhy完成签到,获得积分10
35秒前
搞怪的白云完成签到 ,获得积分10
36秒前
小巧的白竹完成签到,获得积分10
38秒前
想发一篇贾克斯完成签到,获得积分10
38秒前
kryptonite完成签到 ,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910766
求助须知:如何正确求助?哪些是违规求助? 4186429
关于积分的说明 12999659
捐赠科研通 3953947
什么是DOI,文献DOI怎么找? 2168228
邀请新用户注册赠送积分活动 1186607
关于科研通互助平台的介绍 1093874