已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Synthetic Force-Field Database for Training Machine Learning Models to Predict Mobility-Preserving Coarse-Grained Molecular-Simulation Potentials

计算机科学 粒度 机器学习 人工智能 人工神经网络 玻尔兹曼机 分子动力学 反演(地质) 领域(数学) 力场(虚构) 算法 数据挖掘 化学 计算化学 数学 纯数学 古生物学 构造盆地 生物 操作系统
作者
Saientan Bag,Melissa K. Meinel,Florian Müller‐Plathe
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:20 (8): 3046-3060
标识
DOI:10.1021/acs.jctc.4c00242
摘要

Balancing accuracy and efficiency is a common problem in molecular simulation. This tradeoff is evident in coarse-grained molecular dynamics simulation, which prioritizes efficiency, and all-atom molecular simulation, which prioritizes accuracy. Despite continuous efforts, creating a coarse-grained model that accurately captures both the system's structure and dynamics remains elusive. In this article, we present a data-driven approach for constructing coarse-grained models that aim to describe both the structure and dynamics of the system equally well. While the development of machine learning models is well-received in the scientific community, the significance of dataset creation for these models is often overlooked. However, data-driven approaches cannot progress without a robust dataset. To address this, we construct a database of synthetic coarse-grained potentials generated from unphysical all-atom models. A neural network is trained with the generated database to predict the coarse-grained potentials of real liquids. We evaluate their quality by calculating the combined loss of structural and dynamical accuracy upon coarse-graining. When we compare our machine learning-based coarse-grained potential with the one from iterative Boltzmann inversion, the machine learning prediction turns out better for all eight hydrocarbon liquids we studied. As all-atom surfaces turn more nonspherical, both ways of coarse-graining degrade. Still, the neural network outperforms iterative Boltzmann inversion in constructing good quality coarse-grained models for such cases. The synthetic database and the developed machine learning models are freely available to the community, and we believe that our approach will generate interest in efficiently deriving accurate coarse-grained models for liquids.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小牛牛完成签到,获得积分10
1秒前
薯条狂热爱好者完成签到 ,获得积分10
3秒前
4秒前
拉长的断秋完成签到,获得积分10
4秒前
是乐乐呀发布了新的文献求助10
5秒前
燊yy发布了新的文献求助30
7秒前
9秒前
9秒前
9秒前
chrispaul发布了新的文献求助30
10秒前
清秀的芙发布了新的文献求助10
12秒前
akun完成签到,获得积分10
13秒前
gaogaogao完成签到,获得积分20
14秒前
yang发布了新的文献求助10
14秒前
清秀的芙完成签到,获得积分20
20秒前
21秒前
21秒前
缥缈的访云给缥缈的访云的求助进行了留言
21秒前
xmj_sky关注了科研通微信公众号
22秒前
一口蛋黄酥完成签到 ,获得积分10
22秒前
gaogaogao发布了新的文献求助30
23秒前
茜茜大王完成签到,获得积分10
25秒前
周凡淇发布了新的文献求助30
26秒前
NexusExplorer应助123采纳,获得10
27秒前
27秒前
28秒前
iye完成签到 ,获得积分10
28秒前
待放光的吖啶酯完成签到,获得积分10
28秒前
31秒前
长情招牌发布了新的文献求助10
33秒前
TY完成签到 ,获得积分10
34秒前
34秒前
34秒前
34秒前
35秒前
35秒前
麦兜2001发布了新的文献求助10
35秒前
36秒前
赘婿应助小甲鱼采纳,获得10
38秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125744
求助须知:如何正确求助?哪些是违规求助? 2776037
关于积分的说明 7728973
捐赠科研通 2431507
什么是DOI,文献DOI怎么找? 1292095
科研通“疑难数据库(出版商)”最低求助积分说明 622375
版权声明 600380