Research on Prediction Algorithm of Dissolved Oxygen in Aquatic Products Based on Improved LSTM Algorithm

算法 计算机科学 人工智能
作者
Zhenhui Hao
标识
DOI:10.1109/eebda60612.2024.10485663
摘要

This paper discusses a prediction method for dissolved oxygen in aquatic products based on the maximum information coefficient (MIC) and the long short-term memory (LSTM) algorithm. Firstly, the paper emphasizes the importance of dissolved oxygen in aquaculture, which is a key factor affecting the survival and growth of aquatic organisms. Despite the complexity of factors such as temperature, light, water mobility, and biological activity that influence the dynamics of dissolved oxygen, predicting its precise levels remains a formidable challenge. To address this issue, we present the maximum information coefficient (MIC) as an innovative tool for correlation analysis. Unlike traditional correlation coefficients, MIC is able to detect linear, nonlinear, and many-to-many relationships, which is useful for revealing potentially complex relationships between dissolved oxygen and other environmental variables. By calculating the MIC values between environmental variables and dissolved oxygen, we can screen out the most influential factors for the prediction of dissolved oxygen. Subsequently, long short-term memory (LSTM) neural networks were employed to predict dissolved oxygen using selected important environmental variables as inputs. LSTM is a unique recurrent neural network known for its distinctive gating mechanism, which allows the network to effectively capture long-term dependencies in time series data. We input historical dissolved oxygen data and relevant environmental variables into a trained LSTM model to predict future dissolved oxygen levels. The experimental results indicate that the prediction method utilizing MIC and LSTM exhibits strong performance in predicting the accuracy of dissolved oxygen, surpassing traditional statistical models and several other machine learning methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡吵吵完成签到,获得积分20
刚刚
大模型应助tesla采纳,获得10
刚刚
刚刚
444完成签到,获得积分10
刚刚
刚刚
Eric完成签到,获得积分10
1秒前
之_ZH完成签到 ,获得积分10
1秒前
夏侯仪完成签到,获得积分10
2秒前
liuQ完成签到,获得积分20
2秒前
脑洞疼应助郭欣12采纳,获得10
3秒前
3秒前
芭乐完成签到,获得积分10
3秒前
4秒前
唠叨的白萱完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
科研通AI5应助钮祜禄废废采纳,获得10
5秒前
村村发布了新的文献求助30
6秒前
善学以致用应助Casson采纳,获得10
6秒前
6秒前
LXXXXA发布了新的文献求助10
7秒前
高贵花瓣完成签到,获得积分10
8秒前
shuai完成签到 ,获得积分10
8秒前
寰宇完成签到,获得积分10
8秒前
852应助xzDoctor采纳,获得10
8秒前
陆小果完成签到,获得积分10
9秒前
9秒前
大水发布了新的文献求助10
9秒前
nini发布了新的文献求助20
9秒前
9秒前
劲秉应助大力的笑天采纳,获得30
9秒前
9秒前
lw完成签到,获得积分10
10秒前
清爽海云发布了新的文献求助10
10秒前
直率初露发布了新的文献求助10
11秒前
ca0ca0完成签到,获得积分10
11秒前
彭于晏应助scichu采纳,获得10
11秒前
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
On the identity and nomenclature of a climbing bamboo Melocalamus macclellandii 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556601
求助须知:如何正确求助?哪些是违规求助? 3132165
关于积分的说明 9395129
捐赠科研通 2832233
什么是DOI,文献DOI怎么找? 1556699
邀请新用户注册赠送积分活动 726852
科研通“疑难数据库(出版商)”最低求助积分说明 716107