富营养化
环境科学
水生植物
波浪和浅水
生物地球化学循环
低角膜缘
沉积物
水质
水华
水文学(农业)
地质学
海洋学
浮游植物
生态学
营养物
岩土工程
生物
地貌学
作者
Boqiang Qin,Yunlin Zhang,Guangwei Zhu,Guang Gao
标识
DOI:10.1016/j.scitotenv.2023.163494
摘要
Large shallow lake refers to a polymictic system that is often well mixed without stratification during summer. Similar to a small and deep lake, a large and shallow lake has a high nutrient retention rate. Differing from a small and deep lake, it has an extensive sediment-water interface and internal loading from sediment, which has led to high susceptibility to eutrophication. There are many large and shallow freshwater lakes in the middle and lower Yangtze River (MLYR), China, experienced eutrophication and cyanobacteria blooms. To address this issue, a variety of methods focused on in-lake physical and biogeochemical processes was explored. The main gains of these studies included: (1) shallow lakes in the floodplain of the Yangtze River are prone to eutrophication because of their high trophic conditions; (2) wind-induced waves determine sediment resuspension, downward dissolved oxygen penetration, and upward soluble reactive nutrient mobilization, while wind-driven currents regulate the spatial distribution of water quality metrics and algal blooms; (3) the low P loss of shallow lakes via sedimentation and high N loss via denitrification lead to a low N:P ratio and N and P colimitation, which demonstrated the significance of dual N and P reduction for eutrophication control in shallow lakes; (4) extensive submerged macrophyte could suppress internal loading in large, shallow waters, but nutrient loading must be reduced and water clarity must be increased; and (5) climate warming promotes cyanobacterial blooms through positive feedback to exacerbate eutrophication in shallow lakes. The lack of action to address the challenges of non-point source pollution and internal loading from the sediment has led to limited effectiveness of eutrophication control in large shallow lakes under climate warming. In the future, the management of large shallow eutrophic lakes in China must combine social sciences (economic development) with natural technology (pollution reduction) to achieve sustainability.
科研通智能强力驱动
Strongly Powered by AbleSci AI