Potential of dissimilarity measure-based computation of protein thermal stability data for determining protein interactions

背景(考古学) 度量(数据仓库) 公制(单位) 排名(信息检索) 聚类分析 多蛋白复合物 蛋白质折叠 功能(生物学) 理论(学习稳定性) 计算机科学 化学 数据挖掘 人工智能 机器学习 生物 遗传学 生物化学 经济 古生物学 基因 运营管理
作者
Joshua Teitz,Jöerg Sander,Hassan Sarker,Carlos Fernández-Patrón
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (3) 被引量:1
标识
DOI:10.1093/bib/bbad143
摘要

Abstract Determining the interacting proteins in multiprotein complexes can be technically challenging. An emerging biochemical approach to this end is based on the ‘thermal proximity co-aggregation’ (TPCA) phenomenon. Accordingly, when two or more proteins interact to form a complex, they tend to co-aggregate when subjected to heat-induced denaturation and thus exhibit similar melting curves. Here, we explore the potential of leveraging TPCA for determining protein interactions. We demonstrate that dissimilarity measure-based information retrieval applied to melting curves tends to rank a protein-of-interest’s interactors higher than its non-interactors, as shown in the context of pull-down assay results. Consequently, such rankings can reduce the number of confirmatory biochemical experiments needed to find bona fide protein–protein interactions. In general, rankings based on dissimilarity measures generated through metric learning further reduce the required number of experiments compared to those based on standard dissimilarity measures such as Euclidean distance. When a protein mixture’s melting curves are obtained in two conditions, we propose a scoring function that uses melting curve data to inform how likely a protein pair is to interact in one condition but not another. We show that ranking protein pairs by their scores is an effective approach for determining condition-specific protein–protein interactions. By contrast, clustering melting curve data generally does not inform about the interacting proteins in multiprotein complexes. In conclusion, we report improved methods for dissimilarity measure-based computation of melting curves data that can greatly enhance the determination of interacting proteins in multiprotein complexes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助胖成球采纳,获得10
刚刚
gg发布了新的文献求助10
1秒前
易小杨关注了科研通微信公众号
1秒前
study发布了新的文献求助10
2秒前
2秒前
阔达依凝完成签到,获得积分20
4秒前
Koala04发布了新的文献求助10
6秒前
华仔应助kkem采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
十二平均律完成签到,获得积分10
9秒前
传奇3应助lizhiqian2024采纳,获得10
12秒前
nn完成签到 ,获得积分10
12秒前
guan完成签到,获得积分20
13秒前
滔滔江水完成签到,获得积分10
13秒前
荀煜祺发布了新的文献求助10
16秒前
彭于晏应助kkem采纳,获得10
16秒前
16秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
烟花应助科研通管家采纳,获得100
18秒前
共享精神应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
机灵柚子应助科研通管家采纳,获得150
18秒前
ceeray23应助科研通管家采纳,获得10
18秒前
orixero应助科研通管家采纳,获得10
18秒前
慕青应助科研通管家采纳,获得10
18秒前
赘婿应助科研通管家采纳,获得10
18秒前
田様应助科研通管家采纳,获得10
18秒前
机灵柚子应助科研通管家采纳,获得150
19秒前
19秒前
英姑应助科研通管家采纳,获得10
19秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
超级如风完成签到 ,获得积分10
21秒前
五条悟发布了新的文献求助10
23秒前
25秒前
小雨完成签到,获得积分10
25秒前
26秒前
要减肥夜南完成签到,获得积分20
27秒前
27秒前
lizhiqian2024发布了新的文献求助30
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5089714
求助须知:如何正确求助?哪些是违规求助? 4304338
关于积分的说明 13414052
捐赠科研通 4130011
什么是DOI,文献DOI怎么找? 2261956
邀请新用户注册赠送积分活动 1265979
关于科研通互助平台的介绍 1200641