PredinID: Predicting Pathogenic Inframe Indels in Human Through Graph Convolution Neural Network With Graph Sampling Technique

图形 计算机科学 卷积(计算机科学) 采样(信号处理) 人工智能 人工神经网络 数学 算法 理论计算机科学 计算机视觉 滤波器(信号处理)
作者
Zhenyu Yue,Ying Xiang,Guojun Chen,Xiaosong Wang,Ke Li,Youhua Zhang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (5): 3226-3233 被引量:1
标识
DOI:10.1109/tcbb.2023.3266232
摘要

Inframe insertion/deletion (indel) variants may alter protein sequence and function, which are closely related to an extensive variety of diseases. Although recent researches have paid attention to the associations between inframe indels and diseases, modeling indels in silico and interpreting their pathogenicity remain challenging, mainly due to the lack of experimental information and computational methodologies. In this article, we propose a novel computational method named PredinID (Predictor for inframe InDels) via graph convolutional network (GCN). PredinID leverages k-nearest neighbor algorithm to construct the feature graph for aggregating more informative representation, regarding the pathogenic inframe indel prediction as a node classification task. An edge-based sampling strategy is designed for extracting information from both the potential connections of feature space and the topological structure of subgraphs. Evaluated by 5-fold cross-validations, the PredinID method achieves satisfactory performance and is superior to four classic machine learning algorithms and two GCN methods. Comprehensive experiments show that PredinID has superior performances when compared with the state-of-the-art methods on the independent test set. Moreover, we also implement a web server at http://predinid.bio.aielab.cc/ , to facilitate the use of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智紫寒发布了新的文献求助10
1秒前
开心最重要完成签到,获得积分10
3秒前
4秒前
6秒前
亦安发布了新的文献求助10
6秒前
平常书本完成签到 ,获得积分10
7秒前
7秒前
8秒前
初夏发布了新的文献求助10
9秒前
jia完成签到 ,获得积分10
9秒前
10秒前
慕青应助包子采纳,获得10
10秒前
wangayting发布了新的文献求助30
11秒前
Ma发布了新的文献求助30
13秒前
李白发布了新的文献求助10
15秒前
光亮千易完成签到,获得积分10
15秒前
百变毛毛完成签到 ,获得积分10
16秒前
Orange应助给大佬递茶采纳,获得10
17秒前
小刘完成签到,获得积分10
18秒前
无舟完成签到,获得积分10
19秒前
华子的五A替身完成签到,获得积分10
19秒前
20秒前
22秒前
包子完成签到,获得积分20
22秒前
完美世界应助务实的大神采纳,获得10
22秒前
Lu完成签到,获得积分10
24秒前
CodeCraft应助东京芝士123采纳,获得10
26秒前
xiejinhui发布了新的文献求助10
27秒前
28秒前
果果关注了科研通微信公众号
28秒前
缓慢的可乐完成签到,获得积分10
30秒前
隐形曼青应助无舟采纳,获得10
33秒前
葡萄成熟完成签到,获得积分10
35秒前
钱钱钱完成签到,获得积分10
35秒前
weishen完成签到,获得积分0
36秒前
剧院的饭桶完成签到,获得积分10
37秒前
英俊的铭应助Ma采纳,获得10
37秒前
爆米花应助xiejinhui采纳,获得10
38秒前
Qiao发布了新的文献求助10
40秒前
40秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962523
求助须知:如何正确求助?哪些是违规求助? 3508549
关于积分的说明 11141583
捐赠科研通 3241262
什么是DOI,文献DOI怎么找? 1791486
邀请新用户注册赠送积分活动 872876
科研通“疑难数据库(出版商)”最低求助积分说明 803474