PredinID: Predicting Pathogenic Inframe Indels in Human Through Graph Convolution Neural Network With Graph Sampling Technique

图形 计算机科学 卷积(计算机科学) 采样(信号处理) 人工智能 人工神经网络 数学 算法 理论计算机科学 计算机视觉 滤波器(信号处理)
作者
Zhenyu Yue,Ying Xiang,Guojun Chen,Xiaosong Wang,Ke Li,Youhua Zhang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (5): 3226-3233 被引量:2
标识
DOI:10.1109/tcbb.2023.3266232
摘要

Inframe insertion/deletion (indel) variants may alter protein sequence and function, which are closely related to an extensive variety of diseases. Although recent researches have paid attention to the associations between inframe indels and diseases, modeling indels in silico and interpreting their pathogenicity remain challenging, mainly due to the lack of experimental information and computational methodologies. In this article, we propose a novel computational method named PredinID (Predictor for inframe InDels) via graph convolutional network (GCN). PredinID leverages k-nearest neighbor algorithm to construct the feature graph for aggregating more informative representation, regarding the pathogenic inframe indel prediction as a node classification task. An edge-based sampling strategy is designed for extracting information from both the potential connections of feature space and the topological structure of subgraphs. Evaluated by 5-fold cross-validations, the PredinID method achieves satisfactory performance and is superior to four classic machine learning algorithms and two GCN methods. Comprehensive experiments show that PredinID has superior performances when compared with the state-of-the-art methods on the independent test set. Moreover, we also implement a web server at http://predinid.bio.aielab.cc/ , to facilitate the use of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寻道图强应助ZHANGCHAOHANG采纳,获得30
刚刚
奇奇淼完成签到 ,获得积分10
1秒前
jingfortune完成签到 ,获得积分10
1秒前
1秒前
山梦完成签到 ,获得积分10
1秒前
2秒前
文盲完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
NexusExplorer应助烟花采纳,获得10
4秒前
彬彬完成签到,获得积分10
6秒前
ZXC发布了新的文献求助10
6秒前
Jsssds完成签到,获得积分10
6秒前
6秒前
忐忑的火发布了新的文献求助10
6秒前
6秒前
愉快豪完成签到,获得积分10
6秒前
6秒前
xuxu完成签到,获得积分20
7秒前
量子星尘发布了新的文献求助10
7秒前
wuchang2617完成签到,获得积分10
7秒前
8秒前
kldjss发布了新的文献求助10
8秒前
研友_VZG7GZ应助淡定的竺采纳,获得10
9秒前
明亮尔冬完成签到 ,获得积分10
9秒前
雪sung完成签到,获得积分10
9秒前
10秒前
10秒前
yue发布了新的文献求助10
11秒前
lk关闭了lk文献求助
11秒前
11秒前
lilei发布了新的文献求助10
11秒前
12秒前
unflycn完成签到,获得积分10
12秒前
无极微光应助屹舟采纳,获得20
13秒前
烟花应助毛毛采纳,获得10
13秒前
桐桐应助乐观小之采纳,获得10
13秒前
泥萌完成签到 ,获得积分10
14秒前
叶子发布了新的文献求助10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692886
求助须知:如何正确求助?哪些是违规求助? 5090698
关于积分的说明 15210088
捐赠科研通 4850102
什么是DOI,文献DOI怎么找? 2601504
邀请新用户注册赠送积分活动 1553332
关于科研通互助平台的介绍 1511381