Lawsonia intracellularis (LI) are obligate intracellular bacteria and the causative agent of proliferative hemorrhagic enteropathy that significantly impacts the health of piglets and the profitability of the swine industry. In this study, we used immunoinformatic and computational methodologies such as homology modelling, molecular docking, molecular dynamic (MD) simulation, and free energy calculations in a novel three stage approach to identify strong T and B cell epitopes in the LI proteome. From ∼ 1342 LI proteins, we narrowed our focus to 256 proteins that were either not well-identified (unknown role) or were expressed at a higher frequency in pathogenic strains relative to non-pathogenic strains. At stage 1, these proteins were analyzed for predicted virulence, antigenicity, solubility, and probability of residing within a membrane. At stage 2, we used NetMHCPan4-1 to identify over ten thousand cytotoxic T lymphocyte epitopes (CTLEs) and 286 CTLEs were ranked as having high predicted binding affinity for the SLA-1 and SLA-2 complexes. At stage 3, we used homology modeling to predict the structures of the top ranked CTLEs and we subjected each of them to molecular docking analysis with SLA-1*0401 and SLA-2*0402. The top ranked 25 SLA–CTLE complexes were selected to be an input for subsequent MD simulations to fully investigate the atomic-level dynamics of proteins under the natural thermal fluctuation of water and thus potentially provide deep insight into the CTLE-SLA interaction. We also performed free energy evaluation by Molecular Mechanics/Poisson−Boltzmann Surface Area to predict epitope interactions and binding affinities to the SLA-1 and SLA-2. We identified the top five CTLEs having the strongest binding energy to the indicated SLAs (-305.6 kJ/mol, -219.5 kJ/mol, -214.8 kJ/mol, -139.5 kJ/mol and -92.6 kJ/mol, respectively.) W also performed B-cell epitope prediction and the top-ranked 5 CTLEs and 3 B-cell epitopes were organized into a multi-epitope subunit antigen vaccine construct joined using EAAAK, AAY, KK, and GGGGG linkers with 40 residues of the LI DnaK protein attached to the N-terminus to further enhance the antigenicity of the vaccine construct. Blind docking studies showed strong interactions between our vaccine construct with swine Toll-like receptor 5. Collectively, these molecular modeling and immunoinformatic analyses present a useful in silico protocol for the discovery of candidate antigen in many viral and bacterial pathogens.