Designing AI-Based Work Processes: How the Timing of AI Advice Affects Diagnostic Decision Making

建议(编程) 计算机科学 工作(物理) 人工智能 数据科学 机器学习 管理科学 工程类 机械工程 程序设计语言
作者
Jiamin Yin,Kee Yuan Ngiam,Sharon Swee-Lin Tan,Hock‐Hai Teo
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2022.01454
摘要

Although clinical artificial intelligence (AI) systems can augment medical diagnosis decisions by providing competent second opinions, how to effectively integrate AI into routine diagnostic processes, such as when to present AI advice to human physicians, remains largely unexplored. Therefore, our research experimentally examines how the timing of AI advice affects diagnostic decision making using a think-aloud approach. Physicians perform medical diagnoses under three conditions: ex post advice (AI advice given after an initial diagnosis), ex ante advice (AI advice given concurrently with clinical information), and a control condition (no AI advice). Our results indicate that the timing of AI advice significantly affects diagnostic accuracy and calibration, with the ex post advice condition yielding the best performance and the control condition the worst. We then conduct several analyses to disentangle the underlying mechanism. We reveal that the superior diagnostic quality in the ex post advice condition can be attributed to more thorough clinical information processing and more active cognitive engagement with AI’s reasoning rationale. As a result, participants in the ex post advice condition are more capable of differentiating correct from incorrect AI advice than those in the ex ante advice condition. Additionally, they benefit more from high-quality AI advice that contradicts their initial diagnoses. To gain additional insights, we estimate the heterogeneous treatment effects based on physician and clinical case characteristics. Our findings underscore the importance of presenting AI advice at appropriate times during routine diagnostic processes to achieve successful decision augmentation with AI advice. This paper was accepted by Anindya Ghose, information systems. Funding: This work was supported by the National University of Singapore [Grants Dean Strategic Fund - Health Informatics (HIIOT)/E and NSCP/ N-171-000-499-001] and the National Natural Science Foundation of China [Grant 72301279]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.01454 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助Jennah采纳,获得10
刚刚
迷路含莲发布了新的文献求助10
刚刚
刚刚
Panting完成签到,获得积分10
刚刚
23发布了新的文献求助10
1秒前
a焦发布了新的文献求助10
1秒前
1秒前
致橡树发布了新的文献求助10
2秒前
2秒前
2秒前
淡淡宛完成签到 ,获得积分10
2秒前
2秒前
3秒前
Baboonium发布了新的文献求助10
3秒前
研友_VZG7GZ应助尕辉采纳,获得10
5秒前
大方安白完成签到,获得积分10
5秒前
木木完成签到,获得积分10
6秒前
honey66619发布了新的文献求助10
6秒前
xiaozhang完成签到 ,获得积分10
6秒前
单身的钧发布了新的文献求助10
6秒前
6秒前
6秒前
hajy发布了新的文献求助10
7秒前
orixero应助迷路含莲采纳,获得10
7秒前
XIEMIN发布了新的文献求助10
8秒前
稳重的菠萝应助致橡树采纳,获得10
8秒前
4311发布了新的文献求助10
8秒前
8秒前
Hello应助ZIHAN采纳,获得10
9秒前
yy完成签到 ,获得积分20
9秒前
一二一完成签到,获得积分10
9秒前
9秒前
可乐加冰发布了新的文献求助10
10秒前
10秒前
11秒前
aa发布了新的文献求助10
11秒前
跳跃安波发布了新的文献求助10
12秒前
晓xiao发布了新的文献求助10
13秒前
激昂的元绿完成签到 ,获得积分10
13秒前
王博士发布了新的文献求助10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Plant–Pollinator Interactions: From Specialization to Generalization 400
Cai Yuanpei y la educación en la República de China (1912-1949) 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3589512
求助须知:如何正确求助?哪些是违规求助? 3157716
关于积分的说明 9517049
捐赠科研通 2860807
什么是DOI,文献DOI怎么找? 1572014
邀请新用户注册赠送积分活动 737653
科研通“疑难数据库(出版商)”最低求助积分说明 722463