System metabolic engineering modification of Saccharomyces cerevisiae to increase SAM production

酿酒酵母 代谢工程 突变体 生物化学 发酵 工业发酵 效价 生物 代谢途径 基因 遗传学 抗体
作者
Liangzhuang Tan,Yuehan Zhang,Ping Liu,Yihang Wu,Zuoyu Huang,Zhong‐Ce Hu,Zhiqiang Liu,Yuan-Shan Wang,Yu‐Guo Zheng
出处
期刊:Bioresources and Bioprocessing [Springer Science+Business Media]
卷期号:12 (1)
标识
DOI:10.1186/s40643-025-00858-9
摘要

Abstract S-adenosyl-L-methionine (SAM) is an important compound with significant pharmaceutical and nutraceutical applications. Currently, microbial fermentation is dominant in SAM production, which remains challenging due to its complex biosynthetic pathway and insufficient precursor availability. In this study, a multimodule engineering strategy based on CRISPR/Cas9 was established to improve the SAM productivity of Saccharomyces cerevisiae . This strategy consists of (1) improving the growth of S. cerevisiae by overexpressing the hxk2 gene; (2) enhancing the metabolic flux toward SAM synthesis by upregulating the expression of the aat1, met17 , and sam2 genes and weakening the synthesis pathway of L-threonine; (3) elevating precursor ATP synthesis by introducing the vgb gene; (4) blocking the SAM degradation pathway by knocking out the sah1 and spe2 genes. The SAM titer of the resulting mutant AU18 reached 1.87 g/L, representing an increase of 227.67% compared to the parental strain. With optimal medium, SAM titer of mutant AU18 reached 2.46 g/L in flask shake fermentation. The SAM titer of mutant AU18 further reached 13.96 g/L after 96 h incubation with a continuous L-Met feeding strategy in a 5 L fermenter. Therefore, with comprehensive optimization of both synthesis and degradation pathways of SAM, a multimodule strategy was established, which significantly elevated the SAM production of S. cerevisiae . This laid a foundation for the construction of hyperproducer for SAM and other valuable amino acids or chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
rookiefcb发布了新的文献求助30
1秒前
3秒前
Hello应助bingbing采纳,获得10
4秒前
。。。发布了新的文献求助10
4秒前
李爱国应助hancahngxiao采纳,获得10
5秒前
张耀文发布了新的文献求助10
5秒前
5秒前
二掌柜发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
7秒前
wanci应助YYY采纳,获得10
8秒前
9秒前
10秒前
田様应助无私的凌丝采纳,获得10
10秒前
橙子发布了新的文献求助10
10秒前
H2CO3发布了新的文献求助10
11秒前
11秒前
12秒前
跳跃的笑白完成签到,获得积分10
13秒前
星辰大海应助ahui采纳,获得10
13秒前
13秒前
桃花不换酒完成签到,获得积分10
14秒前
14秒前
14秒前
LUNWENREQUEST发布了新的文献求助10
15秒前
bingbing完成签到,获得积分10
15秒前
星月夜发布了新的文献求助10
15秒前
Ricky发布了新的文献求助10
16秒前
曹小仙男完成签到 ,获得积分10
16秒前
17秒前
fan发布了新的文献求助10
18秒前
鸣笛应助橙子采纳,获得20
19秒前
蔡蔡完成签到,获得积分10
19秒前
19秒前
22秒前
Ricky完成签到,获得积分10
22秒前
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998421
求助须知:如何正确求助?哪些是违规求助? 3537865
关于积分的说明 11272824
捐赠科研通 3276939
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883818
科研通“疑难数据库(出版商)”最低求助积分说明 810014