A study of regional precipitation data fusion model based on BP-LSTM in Qinghai province

降水 归一化差异植被指数 环境科学 均方误差 人工神经网络 传感器融合 遥感 计算机科学 气象学 人工智能 气候变化 地质学 统计 数学 地理 海洋学
作者
Hongyu Wang,Xiaodan Zhang,Quan Chen,Tong Zhao,Huali Du
标识
DOI:10.1117/12.2682392
摘要

Since Qinghai is located in the high-altitude Qinghai-Tibet Plateau region, the geomorphological types are complex and diverse, and the distribution of ground precipitation observation stations is sparse, improving the accuracy of precipitation data is critical for studying regional ecological change over time. In the paper, we study and construct a multi-source precipitation data fusion model based on neural networks, which consists of back propagation neural network (BPNN) and long short-term memory network (LSTM). The global precipitation measurement (GPM), fifth generation ECMWF atmospheric reanalysis (ERA5), digital elevation model (DEM), and normalized difference vegetation index (NDVI) data are selected as feature data and ground observation station data as label data for model training. The results show that the fused data generated by the BP-LSTM model reduces the root mean square error to 2.48mm and the overall relative bias to 0.25% compared with the original GPM, which is better than ERA5 on data accuracy. The precipitation event capture capability is improved, which is very close to the ERA5 data with strong precipitation event capture capability, and the probability of detection, false alarm rate, and missing event rate are 0.95, 0.53, and 0.04 respectively. Finally, the regional precipitation data is generated by the fusion model with resolution of 0.01°, 1h. The model proposed in the paper incorporates topographic factors and seasonal characteristics to solve the temporal and spatial correlation of precipitation data in Qinghai Province improve the accuracy of precipitation data, and provide reliable data support for the study of regional hydro-ecological spatial and temporal variation patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz完成签到,获得积分10
1秒前
肥仔关注了科研通微信公众号
1秒前
jisimyang98完成签到,获得积分20
1秒前
今后应助要减肥安南采纳,获得10
4秒前
1412完成签到,获得积分20
5秒前
7秒前
头号可爱发布了新的文献求助10
12秒前
12秒前
14秒前
14秒前
May完成签到,获得积分10
14秒前
16秒前
Jasper应助乌龟采纳,获得10
16秒前
17秒前
海风发布了新的文献求助10
18秒前
18秒前
19秒前
开心网络完成签到 ,获得积分10
19秒前
qw1发布了新的文献求助10
19秒前
无误发布了新的文献求助10
20秒前
21秒前
zho完成签到,获得积分10
22秒前
无奈镜子发布了新的文献求助10
23秒前
25秒前
25秒前
奥黛丽赫本完成签到,获得积分10
25秒前
zyq发布了新的文献求助10
26秒前
Lazyazy_完成签到 ,获得积分10
27秒前
choiyxh完成签到,获得积分20
27秒前
vilin发布了新的文献求助10
30秒前
Liufgui应助科研通管家采纳,获得10
30秒前
脑洞疼应助科研通管家采纳,获得10
30秒前
小情绪应助科研通管家采纳,获得10
30秒前
脑洞疼应助科研通管家采纳,获得10
30秒前
李爱国应助科研通管家采纳,获得10
30秒前
30秒前
30秒前
zho关闭了zho文献求助
31秒前
hawaii66完成签到 ,获得积分10
33秒前
无花果应助小比熊采纳,获得10
34秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998986
求助须知:如何正确求助?哪些是违规求助? 3538486
关于积分的说明 11274314
捐赠科研通 3277378
什么是DOI,文献DOI怎么找? 1807541
邀请新用户注册赠送积分活动 883909
科研通“疑难数据库(出版商)”最低求助积分说明 810080