Laser tweezer Raman spectroscopy combined with deep neural networks for identification of liver cancer cells

化学 癌细胞 拉曼光谱 癌症 细胞 肝癌 计算生物学 生物化学 生物物理学 遗传学 生物 光学 物理
作者
Weng shuyun,Fengjie Lin,Changbin Pan,Qiyi Zhang,Hong Tao,Min Fan,Luyun Xu,Kien Voon Kong,Yuanmei Chen,Duo Lin,Shangyuan Feng
出处
期刊:Talanta [Elsevier BV]
卷期号:264: 124753-124753 被引量:11
标识
DOI:10.1016/j.talanta.2023.124753
摘要

Rapid identification of cancer cells is crucial for clinical treatment guidance. Laser tweezer Raman spectroscopy (LTRS) that provides biochemical characteristics of cells can be used to identify cell phenotypes through classification models in a non-invasive and label-free manner. However, traditional classification methods require extensive reference databases and clinical experience, which is challenging when sampling at inaccessible locations. Here, we describe a classification method combing LTRS with deep neural network (DNN) for differential and discriminative analysis of multiple liver cancer (LC) cells. By using LTRS, we obtained high-quality single-cell Raman spectra of normal hepatocytes (HL-7702) and liver cancer cell lines (SMMC-7721, Hep3B, HepG2, SK-Hep1 and Huh7). The tentative assignment of Raman peaks indicated that arginine content was elevated and phenylalanine, glutathione and glutamate content was decreased in liver cancer cells. Subsequently, we randomly selected 300 spectra from each cell line for DNN model analysis, achieving a mean accuracy of 99.2%, a mean sensitivity of 99.2% and a mean specificity of 99.8% for the identification and classification of multiple LC cells and hepatocyte cells. These results demonstrate the combination of LTRS and DNN is a promising method for rapid and accurate cancer cell identification at single cell level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助123456采纳,获得10
刚刚
清爽千亦完成签到 ,获得积分10
刚刚
刚刚
周周完成签到 ,获得积分10
1秒前
读书妖精文亭逐完成签到,获得积分10
1秒前
1秒前
管歌发布了新的文献求助10
1秒前
leez完成签到,获得积分10
2秒前
2秒前
3秒前
WTT发布了新的文献求助10
3秒前
3秒前
笑点低的碧琴完成签到,获得积分10
3秒前
3秒前
3秒前
复杂听筠完成签到 ,获得积分10
4秒前
只是个昵称完成签到,获得积分20
4秒前
成就萤完成签到,获得积分10
4秒前
zihaolee完成签到 ,获得积分10
5秒前
5秒前
及禾发布了新的文献求助10
5秒前
WQQ完成签到,获得积分10
6秒前
大胆隶发布了新的文献求助10
6秒前
许子健发布了新的文献求助10
7秒前
MichelleLu发布了新的文献求助10
7秒前
8秒前
fanglin123完成签到,获得积分10
8秒前
Owen应助王哪跑12采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
隐形曼青应助吴志新采纳,获得10
9秒前
9秒前
9秒前
9秒前
清爽千亦关注了科研通微信公众号
9秒前
冷茗完成签到,获得积分10
9秒前
临风浩歌完成签到,获得积分10
9秒前
忐忑的雪糕完成签到 ,获得积分0
10秒前
10秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646